Cargando…
Cyber-Threat Detection System Using a Hybrid Approach of Transfer Learning and Multi-Model Image Representation
Currently, Android apps are easily targeted by malicious network traffic because of their constant network access. These threats have the potential to steal vital information and disrupt the commerce, social system, and banking markets. In this paper, we present a malware detection system based on w...
Autores principales: | Ullah, Farhan, Ullah, Shamsher, Naeem, Muhammad Rashid, Mostarda, Leonardo, Rho, Seungmin, Cheng, Xiaochun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371416/ https://www.ncbi.nlm.nih.gov/pubmed/35957440 http://dx.doi.org/10.3390/s22155883 |
Ejemplares similares
-
A malware detection system using a hybrid approach of multi-heads attention-based control flow traces and image visualization
por: Ullah, Farhan, et al.
Publicado: (2022) -
Explainable Malware Detection System Using Transformers-Based Transfer Learning and Multi-Model Visual Representation
por: Ullah, Farhan, et al.
Publicado: (2022) -
Cyber threat intelligence
por: Dehghantanha, Ali, et al.
Publicado: (2018) -
An Improved Load Forecasting Method Based on the Transfer Learning Structure under Cyber-Threat Condition
por: Zhao, Luo, et al.
Publicado: (2022) -
Cyber threat!: how to manage the growing risk of cyber attacks
por: Ulsch, N MacDonnell
Publicado: (2014)