Cargando…
Time-Constrained Adversarial Defense in IoT Edge Devices through Kernel Tensor Decomposition and Multi-DNN Scheduling
The development of deep learning technology has resulted in great contributions in many artificial intelligence services, but adversarial attack techniques on deep learning models are also becoming more diverse and sophisticated. IoT edge devices take cloud-independent on-device DNN (deep neural net...
Autores principales: | Kim, Myungsun, Joo, Sanghyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371424/ https://www.ncbi.nlm.nih.gov/pubmed/35957452 http://dx.doi.org/10.3390/s22155896 |
Ejemplares similares
-
IoT-RECSM—Resource-Constrained Smart Service Migration Framework for IoT Edge Computing Environment
por: Zhai, Zhongyi, et al.
Publicado: (2020) -
QoS-Based Service-Time Scheduling in the IoT-Edge Cloud
por: Mutichiro, Briytone, et al.
Publicado: (2021) -
Deep Reinforcement Learning-Based Task Scheduling in IoT Edge Computing
por: Sheng, Shuran, et al.
Publicado: (2021) -
IoT and Edge Computing for Architects
por: Lea, Perry
Publicado: (2020) -
Resource-constrained FPGA/DNN co-design
por: Zhang, Zhichao, et al.
Publicado: (2021)