Cargando…

YOLOv5-AC: Attention Mechanism-Based Lightweight YOLOv5 for Track Pedestrian Detection

In response to the dangerous behavior of pedestrians roaming freely on unsupervised train tracks, the real-time detection of pedestrians is urgently required to ensure the safety of trains and people. Aiming to improve the low accuracy of railway pedestrian detection, the high missed-detection rate...

Descripción completa

Detalles Bibliográficos
Autores principales: Lv, Haohui, Yan, Hanbing, Liu, Keyang, Zhou, Zhenwu, Jing, Junjie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371428/
https://www.ncbi.nlm.nih.gov/pubmed/35957461
http://dx.doi.org/10.3390/s22155903
_version_ 1784767139031285760
author Lv, Haohui
Yan, Hanbing
Liu, Keyang
Zhou, Zhenwu
Jing, Junjie
author_facet Lv, Haohui
Yan, Hanbing
Liu, Keyang
Zhou, Zhenwu
Jing, Junjie
author_sort Lv, Haohui
collection PubMed
description In response to the dangerous behavior of pedestrians roaming freely on unsupervised train tracks, the real-time detection of pedestrians is urgently required to ensure the safety of trains and people. Aiming to improve the low accuracy of railway pedestrian detection, the high missed-detection rate of target pedestrians, and the poor retention of non-redundant boxes, YOLOv5 is adopted as the baseline to improve the effectiveness of pedestrian detection. First of all, L1 regularization is deployed before the BN layer, and the layers with smaller influence factors are removed through sparse training to achieve the effect of model pruning. In the next moment, the context extraction module is applied to the feature extraction network, and the input features are fully extracted using receptive fields of different sizes. In addition, both the context attention module CxAM and the content attention module CnAM are added to the FPN part to correct the target position deviation in the process of feature extraction so that the accuracy of detection can be improved. What is more, DIoU_NMS is employed to replace NMS as the prediction frame screening algorithm to improve the problem of detection target loss in the case of high target coincidence. Experimental results show that compared with YOLOv5, the AP of our YOLOv5-AC model for pedestrians is 95.14%, the recall is 94.22%, and the counting frame rate is 63.1 FPS. Among them, AP and recall increased by 3.78% and 3.92%, respectively, while the detection speed increased by 57.8%. The experimental results verify that our YOLOv5-AC is an effective and accurate method for pedestrian detection in railways.
format Online
Article
Text
id pubmed-9371428
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-93714282022-08-12 YOLOv5-AC: Attention Mechanism-Based Lightweight YOLOv5 for Track Pedestrian Detection Lv, Haohui Yan, Hanbing Liu, Keyang Zhou, Zhenwu Jing, Junjie Sensors (Basel) Article In response to the dangerous behavior of pedestrians roaming freely on unsupervised train tracks, the real-time detection of pedestrians is urgently required to ensure the safety of trains and people. Aiming to improve the low accuracy of railway pedestrian detection, the high missed-detection rate of target pedestrians, and the poor retention of non-redundant boxes, YOLOv5 is adopted as the baseline to improve the effectiveness of pedestrian detection. First of all, L1 regularization is deployed before the BN layer, and the layers with smaller influence factors are removed through sparse training to achieve the effect of model pruning. In the next moment, the context extraction module is applied to the feature extraction network, and the input features are fully extracted using receptive fields of different sizes. In addition, both the context attention module CxAM and the content attention module CnAM are added to the FPN part to correct the target position deviation in the process of feature extraction so that the accuracy of detection can be improved. What is more, DIoU_NMS is employed to replace NMS as the prediction frame screening algorithm to improve the problem of detection target loss in the case of high target coincidence. Experimental results show that compared with YOLOv5, the AP of our YOLOv5-AC model for pedestrians is 95.14%, the recall is 94.22%, and the counting frame rate is 63.1 FPS. Among them, AP and recall increased by 3.78% and 3.92%, respectively, while the detection speed increased by 57.8%. The experimental results verify that our YOLOv5-AC is an effective and accurate method for pedestrian detection in railways. MDPI 2022-08-07 /pmc/articles/PMC9371428/ /pubmed/35957461 http://dx.doi.org/10.3390/s22155903 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Lv, Haohui
Yan, Hanbing
Liu, Keyang
Zhou, Zhenwu
Jing, Junjie
YOLOv5-AC: Attention Mechanism-Based Lightweight YOLOv5 for Track Pedestrian Detection
title YOLOv5-AC: Attention Mechanism-Based Lightweight YOLOv5 for Track Pedestrian Detection
title_full YOLOv5-AC: Attention Mechanism-Based Lightweight YOLOv5 for Track Pedestrian Detection
title_fullStr YOLOv5-AC: Attention Mechanism-Based Lightweight YOLOv5 for Track Pedestrian Detection
title_full_unstemmed YOLOv5-AC: Attention Mechanism-Based Lightweight YOLOv5 for Track Pedestrian Detection
title_short YOLOv5-AC: Attention Mechanism-Based Lightweight YOLOv5 for Track Pedestrian Detection
title_sort yolov5-ac: attention mechanism-based lightweight yolov5 for track pedestrian detection
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371428/
https://www.ncbi.nlm.nih.gov/pubmed/35957461
http://dx.doi.org/10.3390/s22155903
work_keys_str_mv AT lvhaohui yolov5acattentionmechanismbasedlightweightyolov5fortrackpedestriandetection
AT yanhanbing yolov5acattentionmechanismbasedlightweightyolov5fortrackpedestriandetection
AT liukeyang yolov5acattentionmechanismbasedlightweightyolov5fortrackpedestriandetection
AT zhouzhenwu yolov5acattentionmechanismbasedlightweightyolov5fortrackpedestriandetection
AT jingjunjie yolov5acattentionmechanismbasedlightweightyolov5fortrackpedestriandetection