Cargando…
YOLOv5-AC: Attention Mechanism-Based Lightweight YOLOv5 for Track Pedestrian Detection
In response to the dangerous behavior of pedestrians roaming freely on unsupervised train tracks, the real-time detection of pedestrians is urgently required to ensure the safety of trains and people. Aiming to improve the low accuracy of railway pedestrian detection, the high missed-detection rate...
Autores principales: | Lv, Haohui, Yan, Hanbing, Liu, Keyang, Zhou, Zhenwu, Jing, Junjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371428/ https://www.ncbi.nlm.nih.gov/pubmed/35957461 http://dx.doi.org/10.3390/s22155903 |
Ejemplares similares
-
Pedestrian detection algorithm integrating large kernel attention and YOLOV5 lightweight model
por: Yin, Yuping, et al.
Publicado: (2023) -
An Improved YOLOv7 Lightweight Detection Algorithm for Obscured Pedestrians
por: Li, Chang, et al.
Publicado: (2023) -
A Pedestrian Detection Network Model Based on Improved YOLOv5
por: Li, Ming-Lun, et al.
Publicado: (2023) -
YOLOv5s-CA: A Modified YOLOv5s Network with Coordinate Attention for Underwater Target Detection
por: Wen, Ge, et al.
Publicado: (2023) -
A Lightweight YOLOv5-MNE Algorithm for SAR Ship Detection
por: Pang, Lei, et al.
Publicado: (2022)