Cargando…
Improving power in functional magnetic resonance imaging by moving beyond cluster-level inference
Inference in neuroimaging typically occurs at the level of focal brain areas or circuits. Yet, increasingly, well-powered studies paint a much richer picture of broad-scale effects distributed throughout the brain, suggesting that many focal reports may only reflect the tip of the iceberg of underly...
Autores principales: | Noble, Stephanie, Mejia, Amanda F., Zalesky, Andrew, Scheinost, Dustin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371642/ https://www.ncbi.nlm.nih.gov/pubmed/35925887 http://dx.doi.org/10.1073/pnas.2203020119 |
Ejemplares similares
-
Leveraging edge-centric networks complements existing network-level inference for functional connectomes
por: Rodriguez, Raimundo X., et al.
Publicado: (2022) -
Power and reproducibility in the external validation of brain-phenotype predictions
por: Rosenblatt, Matthew, et al.
Publicado: (2023) -
Insect-damaged Arabidopsis moves like wounded Mimosa pudica
por: Kurenda, Andrzej, et al.
Publicado: (2019) -
Nonlinear manifold learning in functional magnetic resonance imaging uncovers a low‐dimensional space of brain dynamics
por: Gao, Siyuan, et al.
Publicado: (2021) -
Navigation of brain networks
por: Seguin, Caio, et al.
Publicado: (2018)