Cargando…

Computationally exploring the mechanism of bacteriophage T7 gp4 helicase translocating along ssDNA

Bacteriophage T7 gp4 helicase has served as a model system for understanding mechanisms of hexameric replicative helicase translocation. The mechanistic basis of how nucleoside 5′-triphosphate hydrolysis and translocation of gp4 helicase are coupled is not fully resolved. Here, we used a thermodynam...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Shikai, Bueno, Carlos, Lu, Wei, Wang, Qian, Chen, Mingchen, Chen, Xun, Wolynes, Peter G., Gao, Yang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371691/
https://www.ncbi.nlm.nih.gov/pubmed/35914145
http://dx.doi.org/10.1073/pnas.2202239119
_version_ 1784767211880054784
author Jin, Shikai
Bueno, Carlos
Lu, Wei
Wang, Qian
Chen, Mingchen
Chen, Xun
Wolynes, Peter G.
Gao, Yang
author_facet Jin, Shikai
Bueno, Carlos
Lu, Wei
Wang, Qian
Chen, Mingchen
Chen, Xun
Wolynes, Peter G.
Gao, Yang
author_sort Jin, Shikai
collection PubMed
description Bacteriophage T7 gp4 helicase has served as a model system for understanding mechanisms of hexameric replicative helicase translocation. The mechanistic basis of how nucleoside 5′-triphosphate hydrolysis and translocation of gp4 helicase are coupled is not fully resolved. Here, we used a thermodynamically benchmarked coarse-grained protein force field, Associative memory, Water mediated, Structure and Energy Model (AWSEM), with the single-stranded DNA (ssDNA) force field 3SPN.2C to investigate gp4 translocation. We found that the adenosine 5′-triphosphate (ATP) at the subunit interface stabilizes the subunit–subunit interaction and inhibits subunit translocation. Hydrolysis of ATP to adenosine 5′-diphosphate enables the translocation of one subunit, and new ATP binding at the new subunit interface finalizes the subunit translocation. The LoopD2 and the N-terminal primase domain provide transient protein–protein and protein–DNA interactions that facilitate the large-scale subunit movement. The simulations of gp4 helicase both validate our coarse-grained protein–ssDNA force field and elucidate the molecular basis of replicative helicase translocation.
format Online
Article
Text
id pubmed-9371691
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-93716912022-08-12 Computationally exploring the mechanism of bacteriophage T7 gp4 helicase translocating along ssDNA Jin, Shikai Bueno, Carlos Lu, Wei Wang, Qian Chen, Mingchen Chen, Xun Wolynes, Peter G. Gao, Yang Proc Natl Acad Sci U S A Biological Sciences Bacteriophage T7 gp4 helicase has served as a model system for understanding mechanisms of hexameric replicative helicase translocation. The mechanistic basis of how nucleoside 5′-triphosphate hydrolysis and translocation of gp4 helicase are coupled is not fully resolved. Here, we used a thermodynamically benchmarked coarse-grained protein force field, Associative memory, Water mediated, Structure and Energy Model (AWSEM), with the single-stranded DNA (ssDNA) force field 3SPN.2C to investigate gp4 translocation. We found that the adenosine 5′-triphosphate (ATP) at the subunit interface stabilizes the subunit–subunit interaction and inhibits subunit translocation. Hydrolysis of ATP to adenosine 5′-diphosphate enables the translocation of one subunit, and new ATP binding at the new subunit interface finalizes the subunit translocation. The LoopD2 and the N-terminal primase domain provide transient protein–protein and protein–DNA interactions that facilitate the large-scale subunit movement. The simulations of gp4 helicase both validate our coarse-grained protein–ssDNA force field and elucidate the molecular basis of replicative helicase translocation. National Academy of Sciences 2022-08-01 2022-08-09 /pmc/articles/PMC9371691/ /pubmed/35914145 http://dx.doi.org/10.1073/pnas.2202239119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Jin, Shikai
Bueno, Carlos
Lu, Wei
Wang, Qian
Chen, Mingchen
Chen, Xun
Wolynes, Peter G.
Gao, Yang
Computationally exploring the mechanism of bacteriophage T7 gp4 helicase translocating along ssDNA
title Computationally exploring the mechanism of bacteriophage T7 gp4 helicase translocating along ssDNA
title_full Computationally exploring the mechanism of bacteriophage T7 gp4 helicase translocating along ssDNA
title_fullStr Computationally exploring the mechanism of bacteriophage T7 gp4 helicase translocating along ssDNA
title_full_unstemmed Computationally exploring the mechanism of bacteriophage T7 gp4 helicase translocating along ssDNA
title_short Computationally exploring the mechanism of bacteriophage T7 gp4 helicase translocating along ssDNA
title_sort computationally exploring the mechanism of bacteriophage t7 gp4 helicase translocating along ssdna
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371691/
https://www.ncbi.nlm.nih.gov/pubmed/35914145
http://dx.doi.org/10.1073/pnas.2202239119
work_keys_str_mv AT jinshikai computationallyexploringthemechanismofbacteriophaget7gp4helicasetranslocatingalongssdna
AT buenocarlos computationallyexploringthemechanismofbacteriophaget7gp4helicasetranslocatingalongssdna
AT luwei computationallyexploringthemechanismofbacteriophaget7gp4helicasetranslocatingalongssdna
AT wangqian computationallyexploringthemechanismofbacteriophaget7gp4helicasetranslocatingalongssdna
AT chenmingchen computationallyexploringthemechanismofbacteriophaget7gp4helicasetranslocatingalongssdna
AT chenxun computationallyexploringthemechanismofbacteriophaget7gp4helicasetranslocatingalongssdna
AT wolynespeterg computationallyexploringthemechanismofbacteriophaget7gp4helicasetranslocatingalongssdna
AT gaoyang computationallyexploringthemechanismofbacteriophaget7gp4helicasetranslocatingalongssdna