Cargando…

High conductivity Sepia melanin ink films for environmentally benign printed electronics

Melanins (from the Greek μέλας, mélas, black) are bio-pigments ubiquitous in flora and fauna. Eumelanin is an insoluble brown–black type of melanin, found in vertebrates and invertebrates alike, among which Sepia (cuttlefish) is noteworthy. Sepia melanin is a type of bio-sourced eumelanin that can r...

Descripción completa

Detalles Bibliográficos
Autores principales: Camus, Anthony, Reali, Manuel, Rozel, Michael, Zhuldybina, Mariia, Soavi, Francesca, Santato, Clara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371694/
https://www.ncbi.nlm.nih.gov/pubmed/35914170
http://dx.doi.org/10.1073/pnas.2200058119
Descripción
Sumario:Melanins (from the Greek μέλας, mélas, black) are bio-pigments ubiquitous in flora and fauna. Eumelanin is an insoluble brown–black type of melanin, found in vertebrates and invertebrates alike, among which Sepia (cuttlefish) is noteworthy. Sepia melanin is a type of bio-sourced eumelanin that can readily be extracted from the ink sac of cuttlefish. Eumelanin features broadband optical absorption, metal-binding affinity and antioxidative and radical-scavenging properties. It is a prototype of benign material for sustainable organic electronics technologies. Here, we report on an electronic conductivity as high as 10(−3) S cm(−1) in flexographically printed Sepia melanin films; such values for the conductivity are typical for well-established high-performance organic electronic polymers but quite uncommon for bio-sourced organic materials. Our studies show the potential of bio-sourced materials for emerging electronic technologies with low human- and eco-toxicity.