Cargando…
Fermionic wave functions from neural-network constrained hidden states
We introduce a systematically improvable family of variational wave functions for the simulation of strongly correlated fermionic systems. This family consists of Slater determinants in an augmented Hilbert space involving “hidden” additional fermionic degrees of freedom. These determinants are proj...
Autores principales: | Robledo Moreno, Javier, Carleo, Giuseppe, Georges, Antoine, Stokes, James |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371695/ https://www.ncbi.nlm.nih.gov/pubmed/35921435 http://dx.doi.org/10.1073/pnas.2122059119 |
Ejemplares similares
-
Fermionic neural-network states for ab-initio electronic structure
por: Choo, Kenny, et al.
Publicado: (2020) -
Conformally invariant constrained fermion models
por: Cabra, D C, et al.
Publicado: (1990) -
Dark, Cold, and Noisy: Constraining Secluded Hidden Sectors with Gravitational Waves
por: Breitbach, Moritz, et al.
Publicado: (2018) -
Higgs boson decays to four fermions through an abelian hidden sector
por: Gopalakrishna, Shrihari, et al.
Publicado: (2008) -
Artificial neural networks for density-functional optimizations in fermionic systems
por: Custódio, Caio A., et al.
Publicado: (2019)