Cargando…
Machine learning–based inverse design for electrochemically controlled microscopic gradients of O(2) and H(2)O(2)
A fundamental understanding of extracellular microenvironments of O(2) and reactive oxygen species (ROS) such as H(2)O(2), ubiquitous in microbiology, demands high-throughput methods of mimicking, controlling, and perturbing gradients of O(2) and H(2)O(2) at microscopic scale with high spatiotempora...
Autores principales: | Chen, Yi, Wang, Jingyu, Hoar, Benjamin B., Lu, Shengtao, Liu, Chong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371721/ https://www.ncbi.nlm.nih.gov/pubmed/35914135 http://dx.doi.org/10.1073/pnas.2206321119 |
Ejemplares similares
-
Tomographic Absorption Spectroscopy for H(2)O Transport in a Laminar Jet with Inverse Concentration Gradient
por: Cheong, Kin-Pang, et al.
Publicado: (2022) -
Electrochemical and electron microscopic characterization of Super-P based cathodes for Li–O(2) batteries
por: Marinaro, Mario, et al.
Publicado: (2013) -
Regression analysis for thermal properties of Al(2)O(3)/H(2)O nanofluid using machine learning techniques
por: Mukesh Kumar, P.C., et al.
Publicado: (2020) -
Inverse Design of Materials by Machine Learning
por: Wang, Jia, et al.
Publicado: (2022) -
TEMPO-Functionalized Nanoporous Au Nanocomposite for the Electrochemical Detection of H(2)O(2)
por: Wen, Dongxiao, et al.
Publicado: (2018)