Cargando…
BrainNet: Optimal Deep Learning Feature Fusion for Brain Tumor Classification
Early detection of brain tumors can save precious human life. This work presents a fully automated design to classify brain tumors. The proposed scheme employs optimal deep learning features for the classification of FLAIR, T1, T2, and T1CE tumors. Initially, we normalized the dataset to pass them t...
Autores principales: | Zahid, Usman, Ashraf, Imran, Khan, Muhammad Attique, Alhaisoni, Majed, Yahya, Khawaja M., Hussein, Hany S., Alshazly, Hammam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371837/ https://www.ncbi.nlm.nih.gov/pubmed/35965745 http://dx.doi.org/10.1155/2022/1465173 |
Ejemplares similares
-
COVID-19 classification using chest X-ray images based on fusion-assisted deep Bayesian optimization and Grad-CAM visualization
por: Hamza, Ameer, et al.
Publicado: (2022) -
BrainNet Europe’s Code of Conduct for brain banking
por: Klioueva, Natasja M., et al.
Publicado: (2015) -
BrainNet Viewer: A Network Visualization Tool for Human Brain Connectomics
por: Xia, Mingrui, et al.
Publicado: (2013) -
BrainNet: A Multi-Person Brain-to-Brain Interface for Direct Collaboration Between Brains
por: Jiang, Linxing, et al.
Publicado: (2019) -
Multimodal Brain Tumor Classification Using Deep Learning and Robust Feature Selection: A Machine Learning Application for Radiologists
por: Khan, Muhammad Attique, et al.
Publicado: (2020)