Cargando…
MRF-IUNet: A Multiresolution Fusion Brain Tumor Segmentation Network Based on Improved Inception U-Net
The automatic segmentation method of MRI brain tumors uses computer technology to segment and label tumor areas and normal tissues, which plays an important role in assisting doctors in the clinical diagnosis and treatment of brain tumors. This paper proposed a multiresolution fusion MRI brain tumor...
Autores principales: | Jiang, Yongchao, Ye, Mingquan, Wang, Peipei, Huang, Daobin, Lu, Xiaojie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371863/ https://www.ncbi.nlm.nih.gov/pubmed/35966244 http://dx.doi.org/10.1155/2022/6305748 |
Ejemplares similares
-
Generative Adversarial Network Combined with SE-ResNet and Dilated Inception Block for Segmenting Retinal Vessels
por: Yue, Chen, et al.
Publicado: (2022) -
MRF-Net: A multi-branch residual fusion network for fast and accurate whole-brain MRI segmentation
por: Wei, Chong, et al.
Publicado: (2022) -
Contrast-enhanced magnetic resonance image segmentation based on improved U-Net and Inception-ResNet in the diagnosis of spinal metastases
por: Wang, Hai, et al.
Publicado: (2023) -
Deep supervision and atrous inception-based U-Net combining CRF for automatic liver segmentation from CT
por: Lv, Peiqing, et al.
Publicado: (2022) -
A Residual-Inception U-Net (RIU-Net) Approach and Comparisons with U-Shaped CNN and Transformer Models for Building Segmentation from High-Resolution Satellite Images
por: Sariturk, Batuhan, et al.
Publicado: (2022)