Cargando…

Network Pharmacology and Molecular Docking Analysis on the Pharmacological Mechanisms of Modified Sanmiaosan in Treating Ulcerative Colitis

BACKGROUND: Modified Sanmiaosan is an effective cure in the treatment of ulcerative colitis, but its mechanisms of action remain unclear. This study revealed the pharmacological mechanisms of Modified Sanmiaosan acting on ulcerative colitis through a pharmacology approach. MATERIALS AND METHODS: The...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yong, Sun, Ying, Wang, Ruoran, Du, Jisha, Wang, Qingqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371879/
https://www.ncbi.nlm.nih.gov/pubmed/35966251
http://dx.doi.org/10.1155/2022/2556521
Descripción
Sumario:BACKGROUND: Modified Sanmiaosan is an effective cure in the treatment of ulcerative colitis, but its mechanisms of action remain unclear. This study revealed the pharmacological mechanisms of Modified Sanmiaosan acting on ulcerative colitis through a pharmacology approach. MATERIALS AND METHODS: The active compounds and the targets of Modified Sanmiaosan were selected from the Traditional Chinese Medicine Systems Pharmacology database according to the absorption and metabolism. The UC-related therapeutic targets were collected from the PharmGKB database, the GeneCards database, the GADA database, and the OMIM database. The networks of “drug-component-target-disease” and “herbal-component-target” were constructed by the Cytoscape software. Protein–protein interaction network was generated by the STRING database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed by the R software. Molecular docking technology was used to identify the affinity and activity between active compounds and targets. RESULTS: The 80 effective ingredients of MSM were collected. A total of 5180 UC-related genes and the 153 key targets of MSM and UC-related were obtained. JUN, Akt1, and MAPK1 were identified as the “hub targets” involved in the effects of Modified Sanmiaosan on ulcerative colitis. Hub targets were mainly involved in inflammatory response and oxidative stress. As the results of GO analysis, biological processes such as DNA-binding transcription and RNA polymerization may participate in the treatment process; KEGG pathway analysis showed that hub targets were mainly involved in IL-17 signal pathway and TNF signal pathway of ulcerative colitis. The high affinity and activity of the active compounds and targets were verified through molecular docking. CONCLUSION: These findings demonstrate the active ingredients in Modified Sanmiaosan reduce inflammatory response by TNF and IL-17 signaling pathways to treat ulcerative colitis. Anti-inflammation and immune regulation may be the main mechanism of Modified Sanmiaosan in the treatment of ulcerative colitis. This study not only provide new insights into the development of a natural therapy for the prevention and treatment of ulcerative colitis but also proves a feasible method for discovering potential activated compounds from Chinese herbs.