Cargando…
Cell type identification in spatial transcriptomics data can be improved by leveraging cell-type-informative paired tissue images using a Bayesian probabilistic model
Spatial transcriptomics technologies have recently emerged as a powerful tool for measuring spatially resolved gene expression directly in tissues sections, revealing cell types and their dysfunction in unprecedented detail. However, spatial transcriptomics technologies are limited in their ability...
Autores principales: | Zubair, Asif, Chapple, Richard H, Natarajan, Sivaraman, Wright, William C, Pan, Min, Lee, Hyeong-Min, Tillman, Heather, Easton, John, Geeleher, Paul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371936/ https://www.ncbi.nlm.nih.gov/pubmed/35536287 http://dx.doi.org/10.1093/nar/gkac320 |
Ejemplares similares
-
ChIP-BIT: Bayesian inference of target genes using a novel joint probabilistic model of ChIP-seq profiles
por: Chen, Xi, et al.
Publicado: (2016) -
Probabilistic error correction for RNA sequencing
por: Le, Hai-Son, et al.
Publicado: (2013) -
Probabilistic tensor decomposition extracts better latent embeddings from single-cell multiomic data
por: Wang, Ruo Han, et al.
Publicado: (2023) -
A probabilistic generative model for GO enrichment analysis
por: Lu, Yong, et al.
Publicado: (2008) -
Gene loss rate: a probabilistic measure for the conservation of eukaryotic genes
por: Borenstein, Elhanan, et al.
Publicado: (2007)