Cargando…

Deep Visual Proteomics defines single-cell identity and heterogeneity

Despite the availabilty of imaging-based and mass-spectrometry-based methods for spatial proteomics, a key challenge remains connecting images with single-cell-resolution protein abundance measurements. Here, we introduce Deep Visual Proteomics (DVP), which combines artificial-intelligence-driven im...

Descripción completa

Detalles Bibliográficos
Autores principales: Mund, Andreas, Coscia, Fabian, Kriston, András, Hollandi, Réka, Kovács, Ferenc, Brunner, Andreas-David, Migh, Ede, Schweizer, Lisa, Santos, Alberto, Bzorek, Michael, Naimy, Soraya, Rahbek-Gjerdrum, Lise Mette, Dyring-Andersen, Beatrice, Bulkescher, Jutta, Lukas, Claudia, Eckert, Mark Adam, Lengyel, Ernst, Gnann, Christian, Lundberg, Emma, Horvath, Peter, Mann, Matthias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371970/
https://www.ncbi.nlm.nih.gov/pubmed/35590073
http://dx.doi.org/10.1038/s41587-022-01302-5
_version_ 1784767278707900416
author Mund, Andreas
Coscia, Fabian
Kriston, András
Hollandi, Réka
Kovács, Ferenc
Brunner, Andreas-David
Migh, Ede
Schweizer, Lisa
Santos, Alberto
Bzorek, Michael
Naimy, Soraya
Rahbek-Gjerdrum, Lise Mette
Dyring-Andersen, Beatrice
Bulkescher, Jutta
Lukas, Claudia
Eckert, Mark Adam
Lengyel, Ernst
Gnann, Christian
Lundberg, Emma
Horvath, Peter
Mann, Matthias
author_facet Mund, Andreas
Coscia, Fabian
Kriston, András
Hollandi, Réka
Kovács, Ferenc
Brunner, Andreas-David
Migh, Ede
Schweizer, Lisa
Santos, Alberto
Bzorek, Michael
Naimy, Soraya
Rahbek-Gjerdrum, Lise Mette
Dyring-Andersen, Beatrice
Bulkescher, Jutta
Lukas, Claudia
Eckert, Mark Adam
Lengyel, Ernst
Gnann, Christian
Lundberg, Emma
Horvath, Peter
Mann, Matthias
author_sort Mund, Andreas
collection PubMed
description Despite the availabilty of imaging-based and mass-spectrometry-based methods for spatial proteomics, a key challenge remains connecting images with single-cell-resolution protein abundance measurements. Here, we introduce Deep Visual Proteomics (DVP), which combines artificial-intelligence-driven image analysis of cellular phenotypes with automated single-cell or single-nucleus laser microdissection and ultra-high-sensitivity mass spectrometry. DVP links protein abundance to complex cellular or subcellular phenotypes while preserving spatial context. By individually excising nuclei from cell culture, we classified distinct cell states with proteomic profiles defined by known and uncharacterized proteins. In an archived primary melanoma tissue, DVP identified spatially resolved proteome changes as normal melanocytes transition to fully invasive melanoma, revealing pathways that change in a spatial manner as cancer progresses, such as mRNA splicing dysregulation in metastatic vertical growth that coincides with reduced interferon signaling and antigen presentation. The ability of DVP to retain precise spatial proteomic information in the tissue context has implications for the molecular profiling of clinical samples.
format Online
Article
Text
id pubmed-9371970
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group US
record_format MEDLINE/PubMed
spelling pubmed-93719702022-08-13 Deep Visual Proteomics defines single-cell identity and heterogeneity Mund, Andreas Coscia, Fabian Kriston, András Hollandi, Réka Kovács, Ferenc Brunner, Andreas-David Migh, Ede Schweizer, Lisa Santos, Alberto Bzorek, Michael Naimy, Soraya Rahbek-Gjerdrum, Lise Mette Dyring-Andersen, Beatrice Bulkescher, Jutta Lukas, Claudia Eckert, Mark Adam Lengyel, Ernst Gnann, Christian Lundberg, Emma Horvath, Peter Mann, Matthias Nat Biotechnol Article Despite the availabilty of imaging-based and mass-spectrometry-based methods for spatial proteomics, a key challenge remains connecting images with single-cell-resolution protein abundance measurements. Here, we introduce Deep Visual Proteomics (DVP), which combines artificial-intelligence-driven image analysis of cellular phenotypes with automated single-cell or single-nucleus laser microdissection and ultra-high-sensitivity mass spectrometry. DVP links protein abundance to complex cellular or subcellular phenotypes while preserving spatial context. By individually excising nuclei from cell culture, we classified distinct cell states with proteomic profiles defined by known and uncharacterized proteins. In an archived primary melanoma tissue, DVP identified spatially resolved proteome changes as normal melanocytes transition to fully invasive melanoma, revealing pathways that change in a spatial manner as cancer progresses, such as mRNA splicing dysregulation in metastatic vertical growth that coincides with reduced interferon signaling and antigen presentation. The ability of DVP to retain precise spatial proteomic information in the tissue context has implications for the molecular profiling of clinical samples. Nature Publishing Group US 2022-05-19 2022 /pmc/articles/PMC9371970/ /pubmed/35590073 http://dx.doi.org/10.1038/s41587-022-01302-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Mund, Andreas
Coscia, Fabian
Kriston, András
Hollandi, Réka
Kovács, Ferenc
Brunner, Andreas-David
Migh, Ede
Schweizer, Lisa
Santos, Alberto
Bzorek, Michael
Naimy, Soraya
Rahbek-Gjerdrum, Lise Mette
Dyring-Andersen, Beatrice
Bulkescher, Jutta
Lukas, Claudia
Eckert, Mark Adam
Lengyel, Ernst
Gnann, Christian
Lundberg, Emma
Horvath, Peter
Mann, Matthias
Deep Visual Proteomics defines single-cell identity and heterogeneity
title Deep Visual Proteomics defines single-cell identity and heterogeneity
title_full Deep Visual Proteomics defines single-cell identity and heterogeneity
title_fullStr Deep Visual Proteomics defines single-cell identity and heterogeneity
title_full_unstemmed Deep Visual Proteomics defines single-cell identity and heterogeneity
title_short Deep Visual Proteomics defines single-cell identity and heterogeneity
title_sort deep visual proteomics defines single-cell identity and heterogeneity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371970/
https://www.ncbi.nlm.nih.gov/pubmed/35590073
http://dx.doi.org/10.1038/s41587-022-01302-5
work_keys_str_mv AT mundandreas deepvisualproteomicsdefinessinglecellidentityandheterogeneity
AT cosciafabian deepvisualproteomicsdefinessinglecellidentityandheterogeneity
AT kristonandras deepvisualproteomicsdefinessinglecellidentityandheterogeneity
AT hollandireka deepvisualproteomicsdefinessinglecellidentityandheterogeneity
AT kovacsferenc deepvisualproteomicsdefinessinglecellidentityandheterogeneity
AT brunnerandreasdavid deepvisualproteomicsdefinessinglecellidentityandheterogeneity
AT mighede deepvisualproteomicsdefinessinglecellidentityandheterogeneity
AT schweizerlisa deepvisualproteomicsdefinessinglecellidentityandheterogeneity
AT santosalberto deepvisualproteomicsdefinessinglecellidentityandheterogeneity
AT bzorekmichael deepvisualproteomicsdefinessinglecellidentityandheterogeneity
AT naimysoraya deepvisualproteomicsdefinessinglecellidentityandheterogeneity
AT rahbekgjerdrumlisemette deepvisualproteomicsdefinessinglecellidentityandheterogeneity
AT dyringandersenbeatrice deepvisualproteomicsdefinessinglecellidentityandheterogeneity
AT bulkescherjutta deepvisualproteomicsdefinessinglecellidentityandheterogeneity
AT lukasclaudia deepvisualproteomicsdefinessinglecellidentityandheterogeneity
AT eckertmarkadam deepvisualproteomicsdefinessinglecellidentityandheterogeneity
AT lengyelernst deepvisualproteomicsdefinessinglecellidentityandheterogeneity
AT gnannchristian deepvisualproteomicsdefinessinglecellidentityandheterogeneity
AT lundbergemma deepvisualproteomicsdefinessinglecellidentityandheterogeneity
AT horvathpeter deepvisualproteomicsdefinessinglecellidentityandheterogeneity
AT mannmatthias deepvisualproteomicsdefinessinglecellidentityandheterogeneity