Cargando…
Deep Visual Proteomics defines single-cell identity and heterogeneity
Despite the availabilty of imaging-based and mass-spectrometry-based methods for spatial proteomics, a key challenge remains connecting images with single-cell-resolution protein abundance measurements. Here, we introduce Deep Visual Proteomics (DVP), which combines artificial-intelligence-driven im...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371970/ https://www.ncbi.nlm.nih.gov/pubmed/35590073 http://dx.doi.org/10.1038/s41587-022-01302-5 |
_version_ | 1784767278707900416 |
---|---|
author | Mund, Andreas Coscia, Fabian Kriston, András Hollandi, Réka Kovács, Ferenc Brunner, Andreas-David Migh, Ede Schweizer, Lisa Santos, Alberto Bzorek, Michael Naimy, Soraya Rahbek-Gjerdrum, Lise Mette Dyring-Andersen, Beatrice Bulkescher, Jutta Lukas, Claudia Eckert, Mark Adam Lengyel, Ernst Gnann, Christian Lundberg, Emma Horvath, Peter Mann, Matthias |
author_facet | Mund, Andreas Coscia, Fabian Kriston, András Hollandi, Réka Kovács, Ferenc Brunner, Andreas-David Migh, Ede Schweizer, Lisa Santos, Alberto Bzorek, Michael Naimy, Soraya Rahbek-Gjerdrum, Lise Mette Dyring-Andersen, Beatrice Bulkescher, Jutta Lukas, Claudia Eckert, Mark Adam Lengyel, Ernst Gnann, Christian Lundberg, Emma Horvath, Peter Mann, Matthias |
author_sort | Mund, Andreas |
collection | PubMed |
description | Despite the availabilty of imaging-based and mass-spectrometry-based methods for spatial proteomics, a key challenge remains connecting images with single-cell-resolution protein abundance measurements. Here, we introduce Deep Visual Proteomics (DVP), which combines artificial-intelligence-driven image analysis of cellular phenotypes with automated single-cell or single-nucleus laser microdissection and ultra-high-sensitivity mass spectrometry. DVP links protein abundance to complex cellular or subcellular phenotypes while preserving spatial context. By individually excising nuclei from cell culture, we classified distinct cell states with proteomic profiles defined by known and uncharacterized proteins. In an archived primary melanoma tissue, DVP identified spatially resolved proteome changes as normal melanocytes transition to fully invasive melanoma, revealing pathways that change in a spatial manner as cancer progresses, such as mRNA splicing dysregulation in metastatic vertical growth that coincides with reduced interferon signaling and antigen presentation. The ability of DVP to retain precise spatial proteomic information in the tissue context has implications for the molecular profiling of clinical samples. |
format | Online Article Text |
id | pubmed-9371970 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group US |
record_format | MEDLINE/PubMed |
spelling | pubmed-93719702022-08-13 Deep Visual Proteomics defines single-cell identity and heterogeneity Mund, Andreas Coscia, Fabian Kriston, András Hollandi, Réka Kovács, Ferenc Brunner, Andreas-David Migh, Ede Schweizer, Lisa Santos, Alberto Bzorek, Michael Naimy, Soraya Rahbek-Gjerdrum, Lise Mette Dyring-Andersen, Beatrice Bulkescher, Jutta Lukas, Claudia Eckert, Mark Adam Lengyel, Ernst Gnann, Christian Lundberg, Emma Horvath, Peter Mann, Matthias Nat Biotechnol Article Despite the availabilty of imaging-based and mass-spectrometry-based methods for spatial proteomics, a key challenge remains connecting images with single-cell-resolution protein abundance measurements. Here, we introduce Deep Visual Proteomics (DVP), which combines artificial-intelligence-driven image analysis of cellular phenotypes with automated single-cell or single-nucleus laser microdissection and ultra-high-sensitivity mass spectrometry. DVP links protein abundance to complex cellular or subcellular phenotypes while preserving spatial context. By individually excising nuclei from cell culture, we classified distinct cell states with proteomic profiles defined by known and uncharacterized proteins. In an archived primary melanoma tissue, DVP identified spatially resolved proteome changes as normal melanocytes transition to fully invasive melanoma, revealing pathways that change in a spatial manner as cancer progresses, such as mRNA splicing dysregulation in metastatic vertical growth that coincides with reduced interferon signaling and antigen presentation. The ability of DVP to retain precise spatial proteomic information in the tissue context has implications for the molecular profiling of clinical samples. Nature Publishing Group US 2022-05-19 2022 /pmc/articles/PMC9371970/ /pubmed/35590073 http://dx.doi.org/10.1038/s41587-022-01302-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Mund, Andreas Coscia, Fabian Kriston, András Hollandi, Réka Kovács, Ferenc Brunner, Andreas-David Migh, Ede Schweizer, Lisa Santos, Alberto Bzorek, Michael Naimy, Soraya Rahbek-Gjerdrum, Lise Mette Dyring-Andersen, Beatrice Bulkescher, Jutta Lukas, Claudia Eckert, Mark Adam Lengyel, Ernst Gnann, Christian Lundberg, Emma Horvath, Peter Mann, Matthias Deep Visual Proteomics defines single-cell identity and heterogeneity |
title | Deep Visual Proteomics defines single-cell identity and heterogeneity |
title_full | Deep Visual Proteomics defines single-cell identity and heterogeneity |
title_fullStr | Deep Visual Proteomics defines single-cell identity and heterogeneity |
title_full_unstemmed | Deep Visual Proteomics defines single-cell identity and heterogeneity |
title_short | Deep Visual Proteomics defines single-cell identity and heterogeneity |
title_sort | deep visual proteomics defines single-cell identity and heterogeneity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371970/ https://www.ncbi.nlm.nih.gov/pubmed/35590073 http://dx.doi.org/10.1038/s41587-022-01302-5 |
work_keys_str_mv | AT mundandreas deepvisualproteomicsdefinessinglecellidentityandheterogeneity AT cosciafabian deepvisualproteomicsdefinessinglecellidentityandheterogeneity AT kristonandras deepvisualproteomicsdefinessinglecellidentityandheterogeneity AT hollandireka deepvisualproteomicsdefinessinglecellidentityandheterogeneity AT kovacsferenc deepvisualproteomicsdefinessinglecellidentityandheterogeneity AT brunnerandreasdavid deepvisualproteomicsdefinessinglecellidentityandheterogeneity AT mighede deepvisualproteomicsdefinessinglecellidentityandheterogeneity AT schweizerlisa deepvisualproteomicsdefinessinglecellidentityandheterogeneity AT santosalberto deepvisualproteomicsdefinessinglecellidentityandheterogeneity AT bzorekmichael deepvisualproteomicsdefinessinglecellidentityandheterogeneity AT naimysoraya deepvisualproteomicsdefinessinglecellidentityandheterogeneity AT rahbekgjerdrumlisemette deepvisualproteomicsdefinessinglecellidentityandheterogeneity AT dyringandersenbeatrice deepvisualproteomicsdefinessinglecellidentityandheterogeneity AT bulkescherjutta deepvisualproteomicsdefinessinglecellidentityandheterogeneity AT lukasclaudia deepvisualproteomicsdefinessinglecellidentityandheterogeneity AT eckertmarkadam deepvisualproteomicsdefinessinglecellidentityandheterogeneity AT lengyelernst deepvisualproteomicsdefinessinglecellidentityandheterogeneity AT gnannchristian deepvisualproteomicsdefinessinglecellidentityandheterogeneity AT lundbergemma deepvisualproteomicsdefinessinglecellidentityandheterogeneity AT horvathpeter deepvisualproteomicsdefinessinglecellidentityandheterogeneity AT mannmatthias deepvisualproteomicsdefinessinglecellidentityandheterogeneity |