Cargando…

Upconversion photoluminescence excitation reveals exciton–trion and exciton–biexciton coupling in hBN/WS[Formula: see text] /hBN van der Waals heterostructures

Monolayers of transition-metal dichalcogenides with direct band gap located at the binary [Formula: see text] points of the Brillouin zone are promising materials for applications in opto- and spin-electronics due to strongly enhanced Coulomb interactions and specific spin-valley properties. They fu...

Descripción completa

Detalles Bibliográficos
Autores principales: Żuberek, Ewa, Majak, Martyna, Lubczyński, Jakub, Debus, Joerg, Watanabe, Kenji, Taniguchi, Takashi, Ho, Ching-Hwa, Bryja, Leszek, Jadczak, Joanna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9372078/
https://www.ncbi.nlm.nih.gov/pubmed/35953508
http://dx.doi.org/10.1038/s41598-022-18104-z
_version_ 1784767301997821952
author Żuberek, Ewa
Majak, Martyna
Lubczyński, Jakub
Debus, Joerg
Watanabe, Kenji
Taniguchi, Takashi
Ho, Ching-Hwa
Bryja, Leszek
Jadczak, Joanna
author_facet Żuberek, Ewa
Majak, Martyna
Lubczyński, Jakub
Debus, Joerg
Watanabe, Kenji
Taniguchi, Takashi
Ho, Ching-Hwa
Bryja, Leszek
Jadczak, Joanna
author_sort Żuberek, Ewa
collection PubMed
description Monolayers of transition-metal dichalcogenides with direct band gap located at the binary [Formula: see text] points of the Brillouin zone are promising materials for applications in opto- and spin-electronics due to strongly enhanced Coulomb interactions and specific spin-valley properties. They furthermore represent a unique platform to study electron–electron and electron–phonon interactions in diverse exciton complexes. Here, we demonstrate processes in which the neutral biexciton and two negative trions, namely the spin-triplet and spin-singlet trions, upconvert light into a bright intravalley exciton in an hBN-encapsulated WS[Formula: see text] monolayer. We propose that the energy gains required in the polarized upconversion photoluminescence originate from different interactions including resonant optical phonons, a cooling of resident electrons and a non-local and an anisotropic electron–hole exchange, respectively. The temperature dependence (7–120 K) of the excitonic upconversion intensity obtained at excitation energies corresponding to the biexciton and trions provides insight into an increasing phonon population as well as a thermally enhanced electron scattering. Our study sheds new light on the understanding of excitonic spin and valley properties of van der Waals heterostructures and improves the understanding of photonic upconversion mechanisms in two-dimensional quantum materials.
format Online
Article
Text
id pubmed-9372078
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-93720782022-08-13 Upconversion photoluminescence excitation reveals exciton–trion and exciton–biexciton coupling in hBN/WS[Formula: see text] /hBN van der Waals heterostructures Żuberek, Ewa Majak, Martyna Lubczyński, Jakub Debus, Joerg Watanabe, Kenji Taniguchi, Takashi Ho, Ching-Hwa Bryja, Leszek Jadczak, Joanna Sci Rep Article Monolayers of transition-metal dichalcogenides with direct band gap located at the binary [Formula: see text] points of the Brillouin zone are promising materials for applications in opto- and spin-electronics due to strongly enhanced Coulomb interactions and specific spin-valley properties. They furthermore represent a unique platform to study electron–electron and electron–phonon interactions in diverse exciton complexes. Here, we demonstrate processes in which the neutral biexciton and two negative trions, namely the spin-triplet and spin-singlet trions, upconvert light into a bright intravalley exciton in an hBN-encapsulated WS[Formula: see text] monolayer. We propose that the energy gains required in the polarized upconversion photoluminescence originate from different interactions including resonant optical phonons, a cooling of resident electrons and a non-local and an anisotropic electron–hole exchange, respectively. The temperature dependence (7–120 K) of the excitonic upconversion intensity obtained at excitation energies corresponding to the biexciton and trions provides insight into an increasing phonon population as well as a thermally enhanced electron scattering. Our study sheds new light on the understanding of excitonic spin and valley properties of van der Waals heterostructures and improves the understanding of photonic upconversion mechanisms in two-dimensional quantum materials. Nature Publishing Group UK 2022-08-11 /pmc/articles/PMC9372078/ /pubmed/35953508 http://dx.doi.org/10.1038/s41598-022-18104-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Żuberek, Ewa
Majak, Martyna
Lubczyński, Jakub
Debus, Joerg
Watanabe, Kenji
Taniguchi, Takashi
Ho, Ching-Hwa
Bryja, Leszek
Jadczak, Joanna
Upconversion photoluminescence excitation reveals exciton–trion and exciton–biexciton coupling in hBN/WS[Formula: see text] /hBN van der Waals heterostructures
title Upconversion photoluminescence excitation reveals exciton–trion and exciton–biexciton coupling in hBN/WS[Formula: see text] /hBN van der Waals heterostructures
title_full Upconversion photoluminescence excitation reveals exciton–trion and exciton–biexciton coupling in hBN/WS[Formula: see text] /hBN van der Waals heterostructures
title_fullStr Upconversion photoluminescence excitation reveals exciton–trion and exciton–biexciton coupling in hBN/WS[Formula: see text] /hBN van der Waals heterostructures
title_full_unstemmed Upconversion photoluminescence excitation reveals exciton–trion and exciton–biexciton coupling in hBN/WS[Formula: see text] /hBN van der Waals heterostructures
title_short Upconversion photoluminescence excitation reveals exciton–trion and exciton–biexciton coupling in hBN/WS[Formula: see text] /hBN van der Waals heterostructures
title_sort upconversion photoluminescence excitation reveals exciton–trion and exciton–biexciton coupling in hbn/ws[formula: see text] /hbn van der waals heterostructures
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9372078/
https://www.ncbi.nlm.nih.gov/pubmed/35953508
http://dx.doi.org/10.1038/s41598-022-18104-z
work_keys_str_mv AT zuberekewa upconversionphotoluminescenceexcitationrevealsexcitontrionandexcitonbiexcitoncouplinginhbnwsformulaseetexthbnvanderwaalsheterostructures
AT majakmartyna upconversionphotoluminescenceexcitationrevealsexcitontrionandexcitonbiexcitoncouplinginhbnwsformulaseetexthbnvanderwaalsheterostructures
AT lubczynskijakub upconversionphotoluminescenceexcitationrevealsexcitontrionandexcitonbiexcitoncouplinginhbnwsformulaseetexthbnvanderwaalsheterostructures
AT debusjoerg upconversionphotoluminescenceexcitationrevealsexcitontrionandexcitonbiexcitoncouplinginhbnwsformulaseetexthbnvanderwaalsheterostructures
AT watanabekenji upconversionphotoluminescenceexcitationrevealsexcitontrionandexcitonbiexcitoncouplinginhbnwsformulaseetexthbnvanderwaalsheterostructures
AT taniguchitakashi upconversionphotoluminescenceexcitationrevealsexcitontrionandexcitonbiexcitoncouplinginhbnwsformulaseetexthbnvanderwaalsheterostructures
AT hochinghwa upconversionphotoluminescenceexcitationrevealsexcitontrionandexcitonbiexcitoncouplinginhbnwsformulaseetexthbnvanderwaalsheterostructures
AT bryjaleszek upconversionphotoluminescenceexcitationrevealsexcitontrionandexcitonbiexcitoncouplinginhbnwsformulaseetexthbnvanderwaalsheterostructures
AT jadczakjoanna upconversionphotoluminescenceexcitationrevealsexcitontrionandexcitonbiexcitoncouplinginhbnwsformulaseetexthbnvanderwaalsheterostructures