Cargando…
Factorization by quantum annealing using superconducting flux qubits implementing a multiplier Hamiltonian
Prime factorization (P = M × N) is a promising application for quantum computing. Shor’s algorithm is a key concept for breaking the limit for analyzing P, which cannot be effectively solved by classical computation; however, the algorithm requires error-correctable logical qubits. Here, we describe...
Autores principales: | Saida, Daisuke, Hidaka, Mutsuo, Imafuku, Kentaro, Yamanashi, Yuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9372081/ https://www.ncbi.nlm.nih.gov/pubmed/35953585 http://dx.doi.org/10.1038/s41598-022-17867-9 |
Ejemplares similares
-
Superconducting quantum circuit of NOR in quantum annealing
por: Saida, Daisuke, et al.
Publicado: (2022) -
High-performance superconducting quantum processors via laser annealing of transmon qubits
por: Zhang, Eric J., et al.
Publicado: (2022) -
Multi-qubit correction for quantum annealers
por: Ayanzadeh, Ramin, et al.
Publicado: (2021) -
A bifunctional superconducting cell as flux qubit and neuron
por: Pashin, Dmitrii S, et al.
Publicado: (2023) -
Hamiltonian of a flux qubit-LC oscillator circuit in the deep–strong-coupling regime
por: Yoshihara, F., et al.
Publicado: (2022)