Cargando…
Neural activity in afferent projections to the infralimbic cortex is associated with individual differences in the recall of fear extinction
Post-traumatic stress disorder (PTSD) is characterized by an impaired ability to extinguish fear responses to trauma-associated cues. Studies in humans and non-human animals point to differences in the engagement of certain frontal cortical regions as key mediators determining whether or not fear ex...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9372091/ https://www.ncbi.nlm.nih.gov/pubmed/35953525 http://dx.doi.org/10.1038/s41598-022-17895-5 |
Sumario: | Post-traumatic stress disorder (PTSD) is characterized by an impaired ability to extinguish fear responses to trauma-associated cues. Studies in humans and non-human animals point to differences in the engagement of certain frontal cortical regions as key mediators determining whether or not fear extinction is successful, however the neural circuit interactions that dictate the differential involvement of these regions are not well understood. To better understand how individual differences in extinction recall are reflected in differences in neural circuit activity, we labeled projections to the infralimbic cortex (IL) in rats using a retrograde tracer and compared neural activity within, and outside, of IL-projecting neurons. We analyzed these data in groups separated on the basis of how well rats retained extinction memory. We found that within IL-projecting cells, neurons in the posterior paraventricular thalamus showed heightened activity in rats that showed good extinction recall. Outside of the IL-projecting cells, increased Fos activity was observed in good extinction rats in select regions of the claustrum and ventral hippocampus. Our results indicate that differences in extinction recall are associated with a specific pattern of neural activity both within and outside of projections to the IL. |
---|