Cargando…
Optimizing Artificial Neural Network-Based Models to Predict Rice Blast Epidemics in Korea
To predict rice blast, many machine learning methods have been proposed. As the quality and quantity of input data are essential for machine learning techniques, this study develops three artificial neural network (ANN)-based rice blast prediction models by combining two ANN models, the feed-forward...
Autores principales: | Lee, Kyung-Tae, Han, Juhyeong, Kim, Kwang-Hyung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Plant Pathology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9372109/ https://www.ncbi.nlm.nih.gov/pubmed/35953059 http://dx.doi.org/10.5423/PPJ.NT.04.2022.0062 |
Ejemplares similares
-
Outbreak of Rice Blast Disease at Yeoju of Korea in 2020
por: Chung, Hyunjung, et al.
Publicado: (2022) -
Outbreak of Rice Panicle Blast in Jeonbuk Province of Korea in 2021
por: Chung, Hyunjung, et al.
Publicado: (2023) -
Comparison of projected rice blast epidemics in the Korean Peninsula between the CMIP5 and CMIP6 scenarios
por: Lee, Kyoung-Tae, et al.
Publicado: (2022) -
A Procedure for Inducing the Occurrence of Rice Seedling Blast in Paddy Field
por: Qin, Peng, et al.
Publicado: (2021) -
Development of a Daily Epidemiological Model of Rice Blast Tailored for Seasonal Disease Early Warning in South Korea
por: Kim, Kwang-Hyung, et al.
Publicado: (2020)