Cargando…
Mechanical and physical assessment of epoxy, mineral, solvent-based, and water-soluble coating materials
This paper assesses the behavior of mineral, epoxy (EP), solvent, and water-soluble coatings when exposed to salt and regular water for 28 days. Also, it evaluates the pull-off adhesion strength of the same coating materials applied to concrete slabs saturated with oil and water and dried with two d...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9372166/ https://www.ncbi.nlm.nih.gov/pubmed/35953630 http://dx.doi.org/10.1038/s41598-022-18022-0 |
Sumario: | This paper assesses the behavior of mineral, epoxy (EP), solvent, and water-soluble coatings when exposed to salt and regular water for 28 days. Also, it evaluates the pull-off adhesion strength of the same coating materials applied to concrete slabs saturated with oil and water and dried with two different processes: air-dried for 28 days and air-dried for 14 days plus 14 days in the oven at 70 °C. Properties such as carbonation, water absorption rate, pull-off adhesion strength were evaluated for all coatings, and tensile strength, Young’s modulus, and elongation percentage were calculated for mineral coatings. According to the results, the EP coating showed the best performance with the highest pull-off adhesion strength (2.55 MPa) and lowest absorption rate, about 0.02 ± 0.002 g/m(2) day in saltwater and 0.03 ± 0.002 g/m(2) day in regular water. In addition, EP coatings also presented the lowest carbonation rate and the highest suppress ratio. The excellent performance of epoxy coatings is mainly due to their low porosity and the ability to decrease chloride diffusion, making them better than other types of coatings investigated in this study. |
---|