Cargando…
Automated risk assessment of newly detected atrial fibrillation poststroke from electronic health record data using machine learning and natural language processing
BACKGROUND: Timely detection of atrial fibrillation (AF) after stroke is highly clinically relevant, aiding decisions on the optimal strategies for secondary prevention of stroke. In the context of limited medical resources, it is crucial to set the right priorities of extended heart rhythm monitori...
Autores principales: | Sung, Sheng-Feng, Sung, Kuan-Lin, Pan, Ru-Chiou, Lee, Pei-Ju, Hu, Ya-Han |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9372298/ https://www.ncbi.nlm.nih.gov/pubmed/35966534 http://dx.doi.org/10.3389/fcvm.2022.941237 |
Ejemplares similares
-
Validation of Risk Scores for Predicting Atrial Fibrillation Detected After Stroke Based on an Electronic Medical Record Algorithm: A Registry-Claims-Electronic Medical Record Linked Data Study
por: Hsieh, Cheng-Yang, et al.
Publicado: (2022) -
Electronic health record-wide association study for atrial fibrillation in a British cohort
por: Chung, Sheng-Chia, et al.
Publicado: (2023) -
Machine learning prediction of atrial fibrillation in cardiovascular patients using cardiac magnetic resonance and electronic health information
por: Dykstra, Steven, et al.
Publicado: (2022) -
Prognostic value of interleukin-34 and interleukin-38 in patients with newly diagnosed atrial fibrillation
por: Ma, Jiaxue, et al.
Publicado: (2023) -
Impact of right atrial enlargement on clinical outcome in patients with atrial fibrillation
por: Ko, Kyu-Yong, et al.
Publicado: (2022)