Cargando…
A fused biometrics information graph convolutional neural network for effective classification of patellofemoral pain syndrome
Patellofemoral pain syndrome (PFPS) is a common, yet misunderstood, knee pathology. Early accurate diagnosis can help avoid the deterioration of the disease. However, the existing intelligent auxiliary diagnosis methods of PFPS mainly focused on the biosignal of individuals but neglected the common...
Autores principales: | Xiong, Baoping, OuYang, Yaozong, Chang, Yiran, Mao, Guoju, Du, Min, Liu, Bijing, Xu, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9372351/ https://www.ncbi.nlm.nih.gov/pubmed/35968371 http://dx.doi.org/10.3389/fnins.2022.976249 |
Ejemplares similares
-
Graph convolutional networks fusing motif-structure information
por: Wang, Bin, et al.
Publicado: (2022) -
Diagnosis of Patellofemoral Pain Syndrome Based on a Multi-Input Convolutional Neural Network With Data Augmentation
por: Shi, Wuxiang, et al.
Publicado: (2021) -
Auxiliary Diagnostic Method for Patellofemoral Pain Syndrome Based on One-Dimensional Convolutional Neural Network
por: Shi, Wuxiang, et al.
Publicado: (2021) -
A Convolutional Neural Network and Graph Convolutional Network Based Framework for AD Classification
por: Lin, Lan, et al.
Publicado: (2023) -
A deep graph convolutional neural network architecture for graph classification
por: Zhou, Yuchen, et al.
Publicado: (2023)