Cargando…

Hydrolysable tannins, physicochemical properties, and antioxidant property of wild-harvested Terminalia ferdinandiana (exell) fruit at different maturity stages

Terminalia ferdinandiana Exell., also known as Kakadu plum, is a wild-harvested native Australian fruit with limited information on how maturity is affecting the phytonutritional properties and bioactivities of the fruit. Thus, this study investigated changes in hydrolysable tannins, phenolic acids,...

Descripción completa

Detalles Bibliográficos
Autores principales: Phan, Anh Dao Thi, Zhang, Jiale, Seididamyeh, Maral, Srivarathan, Sukirtha, Netzel, Michael E., Sivakumar, Dharini, Sultanbawa, Yasmina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9372433/
https://www.ncbi.nlm.nih.gov/pubmed/35967775
http://dx.doi.org/10.3389/fnut.2022.961679
Descripción
Sumario:Terminalia ferdinandiana Exell., also known as Kakadu plum, is a wild-harvested native Australian fruit with limited information on how maturity is affecting the phytonutritional properties and bioactivities of the fruit. Thus, this study investigated changes in hydrolysable tannins, phenolic acids, sugar profile, standard physicochemical parameters, and antioxidant-scavenging capacity of wild-harvested Kakadu plum fruits at four different maturity stages, from immature to fully mature. Fruits harvested <25, 25–50, 50–75, and 75–100% degree of fullness were classified as highly immature (stage 1), immature (stage 2), semi-mature (stage 3), and fully mature (stage 4), respectively. Results showed that chebulagic acid, geraniin, chebulinic acid, castalagin, punicalagin, and gallic acid continuously decreased during fruit maturity, while elaeocarpusin, helioscopin B, corilagin, 3,4,6-tri-O-galloyl-S-glucose, and ellagic acid increased at the beginning of fruit growth (from stage 1 to 2), but decreased when the fruits reached their full maturity (stage 4). The levels of hydrolysable tannins and phenolic acids in fully mature fruits (stage 4) were significantly (p ≤ 0.05) lower than that in their immature counterparts (stages 1 and 2). Total phenolic content (TPC) and DPPH antioxidant radical-scavenging activity did not vary significantly between different maturity stages. Pearson's correlation coefficient test indicated that TPC and DPPH positively (p ≤ 0.05) correlate with most of the studied tannin compounds. Sugars (glucose, fructose, and sucrose), total soluble solid content, and titratable acidity increased during the fruit development. Furthermore, principal component analysis (PCA) revealed the difference between the immature and mature samples, based on their nutritional profile and bioactive compounds. The PCA results also suggested a considerable variability between the individual trees, highlighting the challenges of wild-harvest practice.