Cargando…
A novel multiple time-frequency sequential coding strategy for hybrid brain-computer interface
BACKGROUND: For brain-computer interface (BCI) communication, electroencephalography provides a preferable choice due to its high temporal resolution and portability over other neural recording techniques. However, current BCIs are unable to sufficiently use the information from time and frequency d...
Autores principales: | Yue, Zan, Wu, Qiong, Ren, Shi-Yuan, Li, Man, Shi, Bin, Pan, Yu, Wang, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9372511/ https://www.ncbi.nlm.nih.gov/pubmed/35966991 http://dx.doi.org/10.3389/fnhum.2022.859259 |
Ejemplares similares
-
Multiple Frequencies Sequential Coding for SSVEP-Based Brain-Computer Interface
por: Zhang, Yangsong, et al.
Publicado: (2012) -
EEG hybrid brain-computer interfaces: A scoping review applying an existing hybrid-BCI taxonomy and considerations for pediatric applications
por: Mussi, Matheus G., et al.
Publicado: (2022) -
Closed-loop motor imagery EEG simulation for brain-computer interfaces
por: Shin, Hyonyoung, et al.
Publicado: (2022) -
Editorial: Women in brain-computer interfaces
por: Lugo, Zulay R., et al.
Publicado: (2023) -
Editorial: Deep Learning in Brain-Computer Interface
por: Ahn, Minkyu, et al.
Publicado: (2022)