Cargando…
The neuroprotective effect of YaoYi-moxibustion on ischemic stroke by attenuating NK-κB expression in rats
BACKGROUND: Traditional Chinese medicine (TCM) has become a crucial direction for ischemic stroke treatment. This study sought to explore the underlying roles of YaoYi-moxibustion (YY-moxi) in ischemic stroke. METHODS: A total of 75 Sprague-Dawley rats were randomly divided into the following 5 grou...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9372685/ https://www.ncbi.nlm.nih.gov/pubmed/35965824 http://dx.doi.org/10.21037/atm-22-3198 |
Sumario: | BACKGROUND: Traditional Chinese medicine (TCM) has become a crucial direction for ischemic stroke treatment. This study sought to explore the underlying roles of YaoYi-moxibustion (YY-moxi) in ischemic stroke. METHODS: A total of 75 Sprague-Dawley rats were randomly divided into the following 5 groups: (I) the sham-operated group; (II) the middle cerebral artery occlusion model (MCAO) group; (III) the YY-moxi group; (IV) the antioxidant (N-acetylcysteine, NAC) group; and (V) the NAC + YY-moxi group. After the model had been established, the NAC group received intracerebroventricular injections of NAC, the YY-moxi group received YY-moxi, and the NAC + YY-moxi group received a combination of these 2 interventions. The neurological deficit score was confirmed, and the cerebral infarction was examined by triphenyl tetrazolium chloride (TTC) staining. In the ischemia site of stroke, terminal deoxynucleotidyl transferase-mediated Dutp nick end labeling staining was applied to examine the apoptotic cells. Additionally, the apoptosis-associated genes and protein expressions in the ischemic brains were investigated by the reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), immunohistochemistry, and western blot analysis. RESULTS: YY-moxi alone and YY-moxi combined with NAC significantly reduced the neurological scores and cerebral infarction area of the MCAO rats. Additionally, YY-moxi alone and the combined application of YY-moxi and NAC improved the pathological status of ischemic brain tissues. Further, we found that YY-moxi alone and YY-moxi in combination with NAC could enhanced the antioxidation ability and reduced the inflammatory response of the MCAO model rats. We also proved that YY-moxi alone and YY-moxi combined with NAC significantly suppressed apoptosis-related proteins in the MCAO model rats. CONCLUSIONS: These findings indicate that YY-moxi exerts a protective effect on cerebral ischemic injury by reducing apoptosis. The study suggests that the mechanism may be related to its downregulating the expression of nuclear factor kappa B (NK-κB). |
---|