Cargando…
Improving antibody thermostability based on statistical analysis of sequence and structural consensus data
BACKGROUND: The use of Monoclonal Antibodies (MAbs) as therapeutics has been increasing over the past 30 years due to their high specificity and strong affinity toward the target. One of the major challenges toward their use as drugs is their low thermostability, which impacts both efficacy as well...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9372885/ https://www.ncbi.nlm.nih.gov/pubmed/35967906 http://dx.doi.org/10.1093/abt/tbac017 |
_version_ | 1784767485327704064 |
---|---|
author | Jia, Lei Jain, Mani Sun, Yaxiong |
author_facet | Jia, Lei Jain, Mani Sun, Yaxiong |
author_sort | Jia, Lei |
collection | PubMed |
description | BACKGROUND: The use of Monoclonal Antibodies (MAbs) as therapeutics has been increasing over the past 30 years due to their high specificity and strong affinity toward the target. One of the major challenges toward their use as drugs is their low thermostability, which impacts both efficacy as well as manufacturing and delivery. METHODS: To aid the design of thermally more stable mutants, consensus sequence-based method has been widely used. These methods typically have a success rate of about 50% with maximum melting temperature increment ranging from 10 to 32°C. To improve the prediction performance, we have developed a new and fast MAbs specific method by adding a 3D structural layer to the consensus sequence method. This is done by analyzing the close-by residue pairs which are conserved in >800 MAbs’ 3D structures. RESULTS: Combining consensus sequence and structural residue pair covariance methods, we developed an in-house application for predicting human MAb thermostability to guide protein engineers to design stable molecules. Major advantage of this structural level assessment is in significantly reducing the false positives by almost half from the consensus sequence method alone. This application has shown success in designing MAb engineering panels in multiple biologics programs. CONCLUSIONS: Our data science-based method shows impacts in Mab engineering. |
format | Online Article Text |
id | pubmed-9372885 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-93728852022-08-12 Improving antibody thermostability based on statistical analysis of sequence and structural consensus data Jia, Lei Jain, Mani Sun, Yaxiong Antib Ther Original Research Article BACKGROUND: The use of Monoclonal Antibodies (MAbs) as therapeutics has been increasing over the past 30 years due to their high specificity and strong affinity toward the target. One of the major challenges toward their use as drugs is their low thermostability, which impacts both efficacy as well as manufacturing and delivery. METHODS: To aid the design of thermally more stable mutants, consensus sequence-based method has been widely used. These methods typically have a success rate of about 50% with maximum melting temperature increment ranging from 10 to 32°C. To improve the prediction performance, we have developed a new and fast MAbs specific method by adding a 3D structural layer to the consensus sequence method. This is done by analyzing the close-by residue pairs which are conserved in >800 MAbs’ 3D structures. RESULTS: Combining consensus sequence and structural residue pair covariance methods, we developed an in-house application for predicting human MAb thermostability to guide protein engineers to design stable molecules. Major advantage of this structural level assessment is in significantly reducing the false positives by almost half from the consensus sequence method alone. This application has shown success in designing MAb engineering panels in multiple biologics programs. CONCLUSIONS: Our data science-based method shows impacts in Mab engineering. Oxford University Press 2022-07-22 /pmc/articles/PMC9372885/ /pubmed/35967906 http://dx.doi.org/10.1093/abt/tbac017 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of Antibody Therapeutics. All rights reserved. For Permissions, please email: journals.permissions@oup.com https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Original Research Article Jia, Lei Jain, Mani Sun, Yaxiong Improving antibody thermostability based on statistical analysis of sequence and structural consensus data |
title | Improving antibody thermostability based on statistical analysis of sequence and structural consensus data |
title_full | Improving antibody thermostability based on statistical analysis of sequence and structural consensus data |
title_fullStr | Improving antibody thermostability based on statistical analysis of sequence and structural consensus data |
title_full_unstemmed | Improving antibody thermostability based on statistical analysis of sequence and structural consensus data |
title_short | Improving antibody thermostability based on statistical analysis of sequence and structural consensus data |
title_sort | improving antibody thermostability based on statistical analysis of sequence and structural consensus data |
topic | Original Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9372885/ https://www.ncbi.nlm.nih.gov/pubmed/35967906 http://dx.doi.org/10.1093/abt/tbac017 |
work_keys_str_mv | AT jialei improvingantibodythermostabilitybasedonstatisticalanalysisofsequenceandstructuralconsensusdata AT jainmani improvingantibodythermostabilitybasedonstatisticalanalysisofsequenceandstructuralconsensusdata AT sunyaxiong improvingantibodythermostabilitybasedonstatisticalanalysisofsequenceandstructuralconsensusdata |