Cargando…

Cytosine base editing enables quadruple-edited allogeneic CART cells for T-ALL

Allogeneic chimeric antigen receptor T-cell (CART) therapies require multiple gene edits to be clinically tractable. Most allogeneic CARTs have been created using gene editing techniques that induce DNA double-stranded breaks (DSBs), resulting in unintended on-target editing outcomes with potentiall...

Descripción completa

Detalles Bibliográficos
Autores principales: Diorio, Caroline, Murray, Ryan, Naniong, Mark, Barrera, Luis, Camblin, Adam, Chukinas, John, Coholan, Lindsey, Edwards, Aaron, Fuller, Tori, Gonzales, Claudia, Grupp, Stephan A., Ladd, Alden, Le, Melissa, Messana, Angelica, Musenge, Faith, Newman, Haley, Poh, Yeh-Chuin, Poulin, Henry, Ryan, Theresa, Shraim, Rawan, Tasian, Sarah K., Vincent, Tiffaney, Young, Lauren, Zhang, Yingying, Ciaramella, Giuseppe, Gehrke, Jason, Teachey, David T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Hematology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9373016/
https://www.ncbi.nlm.nih.gov/pubmed/35560156
http://dx.doi.org/10.1182/blood.2022015825
Descripción
Sumario:Allogeneic chimeric antigen receptor T-cell (CART) therapies require multiple gene edits to be clinically tractable. Most allogeneic CARTs have been created using gene editing techniques that induce DNA double-stranded breaks (DSBs), resulting in unintended on-target editing outcomes with potentially unforeseen consequences. Cytosine base editors (CBEs) install C•G to T•A point mutations in T cells, with between 90% and 99% efficiency to silence gene expression without creating DSBs, greatly reducing or eliminating undesired editing outcomes following multiplexed editing as compared with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). Using CBE, we developed 7CAR8, a CD7-directed allogeneic CART created using 4 simultaneous base edits. We show that CBE, unlike CRISPR-Cas9, does not impact T-cell proliferation, lead to aberrant DNA damage response pathway activation, or result in karyotypic abnormalities following multiplexed editing. We demonstrate 7CAR8 to be highly efficacious against T-cell acute lymphoblastic leukemia (T-ALL) using multiple in vitro and in vivo models. Thus, CBE is a promising technology for applications requiring multiplexed gene editing and can be used to manufacture quadruple-edited 7CAR8 cells, with high potential for clinical translation for relapsed and refractory T-ALL.