Cargando…
Prediction of high infiltration levels in pituitary adenoma using MRI-based radiomics and machine learning
BACKGROUND: Infiltration is important for the surgical planning and prognosis of pituitary adenomas. Differences in preoperative diagnosis have been noted. The aim of this article is to assess the accuracy of machine learning analysis of texture-derived parameters of pituitary adenoma obtained from...
Autores principales: | Zhang, Chao, Heng, Xueyuan, Neng, Wenpeng, Chen, Haixin, Sun, Aigang, Li, Jinxing, Wang, Mingguang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9373412/ https://www.ncbi.nlm.nih.gov/pubmed/35962442 http://dx.doi.org/10.1186/s41016-022-00290-4 |
Ejemplares similares
-
Expression of Cold-Inducible RNA-Binding Protein (CIRP) in Pituitary Adenoma and its Relationships with Tumor Recurrence
por: Wang, Mingguang, et al.
Publicado: (2015) -
Prediction of pituitary adenoma surgical consistency: radiomic data mining and machine learning on T2-weighted MRI
por: Cuocolo, Renato, et al.
Publicado: (2020) -
Machine Learning-Based Radiomics of the Optic Chiasm Predict Visual Outcome Following Pituitary Adenoma Surgery
por: Zhang, Yang, et al.
Publicado: (2021) -
Identification and Validation of a Seizure-Free-Related Gene Signature for Predicting Poor Prognosis in Lower-Grade Gliomas
por: Li, Jinxing, et al.
Publicado: (2021) -
The Application of Artificial Intelligence and Machine Learning in Pituitary Adenomas
por: Dai, Congxin, et al.
Publicado: (2021)