Cargando…
A robust experimental and computational analysis framework at multiple resolutions, modalities and coverages
The ability to study cancer-immune cell communication across the whole tumor section without tissue dissociation is needed, especially for cancer immunotherapy development, which requires understanding of molecular mechanisms and discovery of more druggable targets. In this work, we assembled and ev...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9373800/ https://www.ncbi.nlm.nih.gov/pubmed/35967449 http://dx.doi.org/10.3389/fimmu.2022.911873 |
_version_ | 1784767663539486720 |
---|---|
author | Tran, M. Yoon, S. Teoh, M. Andersen, S. Lam, PY. Purdue, B. W. Raghubar, A. Hanson, SJ. Devitt, K. Jones, K. Walters, S. Monkman, J. Kulasinghe, A. Tuong, ZK. Soyer, HP. Frazer, I. H. Nguyen, Q. |
author_facet | Tran, M. Yoon, S. Teoh, M. Andersen, S. Lam, PY. Purdue, B. W. Raghubar, A. Hanson, SJ. Devitt, K. Jones, K. Walters, S. Monkman, J. Kulasinghe, A. Tuong, ZK. Soyer, HP. Frazer, I. H. Nguyen, Q. |
author_sort | Tran, M. |
collection | PubMed |
description | The ability to study cancer-immune cell communication across the whole tumor section without tissue dissociation is needed, especially for cancer immunotherapy development, which requires understanding of molecular mechanisms and discovery of more druggable targets. In this work, we assembled and evaluated an integrated experimental framework and analytical process to enable genome-wide scale discovery of ligand-receptors potentially used for cellular crosstalks, followed by targeted validation. We assessed the complementarity of four different technologies: single-cell RNA sequencing and Spatial transcriptomic (measuring over >20,000 genes), RNA In Situ Hybridization (RNAscope, measuring 4-12 genes) and Opal Polaris multiplex protein staining (4-9 proteins). To utilize the multimodal data, we implemented existing methods and also developed STRISH (Spatial TRanscriptomic In Situ Hybridization), a computational method that can automatically scan across the whole tissue section for local expression of gene (e.g. RNAscope data) and/or protein markers (e.g. Polaris data) to recapitulate an interaction landscape across the whole tissue. We evaluated the approach to discover and validate cell-cell interaction in situ through in-depth analysis of two types of cancer, basal cell carcinoma and squamous cell carcinoma, which account for over 70% of cancer cases. We showed that inference of cell-cell interactions using scRNA-seq data can misdetect or detect false positive interactions. Spatial transcriptomics still suffers from misdetecting lowly expressed ligand-receptor interactions, but reduces false discovery. RNAscope and Polaris are sensitive methods for defining the location of potential ligand receptor interactions, and the STRISH program can determine the probability that local gene co-expression reflects true cell-cell interaction. We expect that the approach described here will be widely applied to discover and validate ligand receptor interaction in different types of solid cancer tumors. |
format | Online Article Text |
id | pubmed-9373800 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-93738002022-08-13 A robust experimental and computational analysis framework at multiple resolutions, modalities and coverages Tran, M. Yoon, S. Teoh, M. Andersen, S. Lam, PY. Purdue, B. W. Raghubar, A. Hanson, SJ. Devitt, K. Jones, K. Walters, S. Monkman, J. Kulasinghe, A. Tuong, ZK. Soyer, HP. Frazer, I. H. Nguyen, Q. Front Immunol Immunology The ability to study cancer-immune cell communication across the whole tumor section without tissue dissociation is needed, especially for cancer immunotherapy development, which requires understanding of molecular mechanisms and discovery of more druggable targets. In this work, we assembled and evaluated an integrated experimental framework and analytical process to enable genome-wide scale discovery of ligand-receptors potentially used for cellular crosstalks, followed by targeted validation. We assessed the complementarity of four different technologies: single-cell RNA sequencing and Spatial transcriptomic (measuring over >20,000 genes), RNA In Situ Hybridization (RNAscope, measuring 4-12 genes) and Opal Polaris multiplex protein staining (4-9 proteins). To utilize the multimodal data, we implemented existing methods and also developed STRISH (Spatial TRanscriptomic In Situ Hybridization), a computational method that can automatically scan across the whole tissue section for local expression of gene (e.g. RNAscope data) and/or protein markers (e.g. Polaris data) to recapitulate an interaction landscape across the whole tissue. We evaluated the approach to discover and validate cell-cell interaction in situ through in-depth analysis of two types of cancer, basal cell carcinoma and squamous cell carcinoma, which account for over 70% of cancer cases. We showed that inference of cell-cell interactions using scRNA-seq data can misdetect or detect false positive interactions. Spatial transcriptomics still suffers from misdetecting lowly expressed ligand-receptor interactions, but reduces false discovery. RNAscope and Polaris are sensitive methods for defining the location of potential ligand receptor interactions, and the STRISH program can determine the probability that local gene co-expression reflects true cell-cell interaction. We expect that the approach described here will be widely applied to discover and validate ligand receptor interaction in different types of solid cancer tumors. Frontiers Media S.A. 2022-07-29 /pmc/articles/PMC9373800/ /pubmed/35967449 http://dx.doi.org/10.3389/fimmu.2022.911873 Text en Copyright © 2022 Tran, Yoon, Teoh, Andersen, Lam, Purdue, Raghubar, Hanson, Devitt, Jones, Walters, Monkman, Kulasinghe, Tuong, Soyer, Frazer and Nguyen https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Tran, M. Yoon, S. Teoh, M. Andersen, S. Lam, PY. Purdue, B. W. Raghubar, A. Hanson, SJ. Devitt, K. Jones, K. Walters, S. Monkman, J. Kulasinghe, A. Tuong, ZK. Soyer, HP. Frazer, I. H. Nguyen, Q. A robust experimental and computational analysis framework at multiple resolutions, modalities and coverages |
title | A robust experimental and computational analysis framework at multiple resolutions, modalities and coverages |
title_full | A robust experimental and computational analysis framework at multiple resolutions, modalities and coverages |
title_fullStr | A robust experimental and computational analysis framework at multiple resolutions, modalities and coverages |
title_full_unstemmed | A robust experimental and computational analysis framework at multiple resolutions, modalities and coverages |
title_short | A robust experimental and computational analysis framework at multiple resolutions, modalities and coverages |
title_sort | robust experimental and computational analysis framework at multiple resolutions, modalities and coverages |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9373800/ https://www.ncbi.nlm.nih.gov/pubmed/35967449 http://dx.doi.org/10.3389/fimmu.2022.911873 |
work_keys_str_mv | AT tranm arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT yoons arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT teohm arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT andersens arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT lampy arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT purduebw arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT raghubara arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT hansonsj arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT devittk arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT jonesk arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT walterss arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT monkmanj arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT kulasinghea arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT tuongzk arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT soyerhp arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT frazerih arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT nguyenq arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT tranm robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT yoons robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT teohm robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT andersens robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT lampy robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT purduebw robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT raghubara robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT hansonsj robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT devittk robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT jonesk robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT walterss robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT monkmanj robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT kulasinghea robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT tuongzk robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT soyerhp robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT frazerih robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages AT nguyenq robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages |