Cargando…

A robust experimental and computational analysis framework at multiple resolutions, modalities and coverages

The ability to study cancer-immune cell communication across the whole tumor section without tissue dissociation is needed, especially for cancer immunotherapy development, which requires understanding of molecular mechanisms and discovery of more druggable targets. In this work, we assembled and ev...

Descripción completa

Detalles Bibliográficos
Autores principales: Tran, M., Yoon, S., Teoh, M., Andersen, S., Lam, PY., Purdue, B. W., Raghubar, A., Hanson, SJ., Devitt, K., Jones, K., Walters, S., Monkman, J., Kulasinghe, A., Tuong, ZK., Soyer, HP., Frazer, I. H., Nguyen, Q.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9373800/
https://www.ncbi.nlm.nih.gov/pubmed/35967449
http://dx.doi.org/10.3389/fimmu.2022.911873
_version_ 1784767663539486720
author Tran, M.
Yoon, S.
Teoh, M.
Andersen, S.
Lam, PY.
Purdue, B. W.
Raghubar, A.
Hanson, SJ.
Devitt, K.
Jones, K.
Walters, S.
Monkman, J.
Kulasinghe, A.
Tuong, ZK.
Soyer, HP.
Frazer, I. H.
Nguyen, Q.
author_facet Tran, M.
Yoon, S.
Teoh, M.
Andersen, S.
Lam, PY.
Purdue, B. W.
Raghubar, A.
Hanson, SJ.
Devitt, K.
Jones, K.
Walters, S.
Monkman, J.
Kulasinghe, A.
Tuong, ZK.
Soyer, HP.
Frazer, I. H.
Nguyen, Q.
author_sort Tran, M.
collection PubMed
description The ability to study cancer-immune cell communication across the whole tumor section without tissue dissociation is needed, especially for cancer immunotherapy development, which requires understanding of molecular mechanisms and discovery of more druggable targets. In this work, we assembled and evaluated an integrated experimental framework and analytical process to enable genome-wide scale discovery of ligand-receptors potentially used for cellular crosstalks, followed by targeted validation. We assessed the complementarity of four different technologies: single-cell RNA sequencing and Spatial transcriptomic (measuring over >20,000 genes), RNA In Situ Hybridization (RNAscope, measuring 4-12 genes) and Opal Polaris multiplex protein staining (4-9 proteins). To utilize the multimodal data, we implemented existing methods and also developed STRISH (Spatial TRanscriptomic In Situ Hybridization), a computational method that can automatically scan across the whole tissue section for local expression of gene (e.g. RNAscope data) and/or protein markers (e.g. Polaris data) to recapitulate an interaction landscape across the whole tissue. We evaluated the approach to discover and validate cell-cell interaction in situ through in-depth analysis of two types of cancer, basal cell carcinoma and squamous cell carcinoma, which account for over 70% of cancer cases. We showed that inference of cell-cell interactions using scRNA-seq data can misdetect or detect false positive interactions. Spatial transcriptomics still suffers from misdetecting lowly expressed ligand-receptor interactions, but reduces false discovery. RNAscope and Polaris are sensitive methods for defining the location of potential ligand receptor interactions, and the STRISH program can determine the probability that local gene co-expression reflects true cell-cell interaction. We expect that the approach described here will be widely applied to discover and validate ligand receptor interaction in different types of solid cancer tumors.
format Online
Article
Text
id pubmed-9373800
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-93738002022-08-13 A robust experimental and computational analysis framework at multiple resolutions, modalities and coverages Tran, M. Yoon, S. Teoh, M. Andersen, S. Lam, PY. Purdue, B. W. Raghubar, A. Hanson, SJ. Devitt, K. Jones, K. Walters, S. Monkman, J. Kulasinghe, A. Tuong, ZK. Soyer, HP. Frazer, I. H. Nguyen, Q. Front Immunol Immunology The ability to study cancer-immune cell communication across the whole tumor section without tissue dissociation is needed, especially for cancer immunotherapy development, which requires understanding of molecular mechanisms and discovery of more druggable targets. In this work, we assembled and evaluated an integrated experimental framework and analytical process to enable genome-wide scale discovery of ligand-receptors potentially used for cellular crosstalks, followed by targeted validation. We assessed the complementarity of four different technologies: single-cell RNA sequencing and Spatial transcriptomic (measuring over >20,000 genes), RNA In Situ Hybridization (RNAscope, measuring 4-12 genes) and Opal Polaris multiplex protein staining (4-9 proteins). To utilize the multimodal data, we implemented existing methods and also developed STRISH (Spatial TRanscriptomic In Situ Hybridization), a computational method that can automatically scan across the whole tissue section for local expression of gene (e.g. RNAscope data) and/or protein markers (e.g. Polaris data) to recapitulate an interaction landscape across the whole tissue. We evaluated the approach to discover and validate cell-cell interaction in situ through in-depth analysis of two types of cancer, basal cell carcinoma and squamous cell carcinoma, which account for over 70% of cancer cases. We showed that inference of cell-cell interactions using scRNA-seq data can misdetect or detect false positive interactions. Spatial transcriptomics still suffers from misdetecting lowly expressed ligand-receptor interactions, but reduces false discovery. RNAscope and Polaris are sensitive methods for defining the location of potential ligand receptor interactions, and the STRISH program can determine the probability that local gene co-expression reflects true cell-cell interaction. We expect that the approach described here will be widely applied to discover and validate ligand receptor interaction in different types of solid cancer tumors. Frontiers Media S.A. 2022-07-29 /pmc/articles/PMC9373800/ /pubmed/35967449 http://dx.doi.org/10.3389/fimmu.2022.911873 Text en Copyright © 2022 Tran, Yoon, Teoh, Andersen, Lam, Purdue, Raghubar, Hanson, Devitt, Jones, Walters, Monkman, Kulasinghe, Tuong, Soyer, Frazer and Nguyen https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Immunology
Tran, M.
Yoon, S.
Teoh, M.
Andersen, S.
Lam, PY.
Purdue, B. W.
Raghubar, A.
Hanson, SJ.
Devitt, K.
Jones, K.
Walters, S.
Monkman, J.
Kulasinghe, A.
Tuong, ZK.
Soyer, HP.
Frazer, I. H.
Nguyen, Q.
A robust experimental and computational analysis framework at multiple resolutions, modalities and coverages
title A robust experimental and computational analysis framework at multiple resolutions, modalities and coverages
title_full A robust experimental and computational analysis framework at multiple resolutions, modalities and coverages
title_fullStr A robust experimental and computational analysis framework at multiple resolutions, modalities and coverages
title_full_unstemmed A robust experimental and computational analysis framework at multiple resolutions, modalities and coverages
title_short A robust experimental and computational analysis framework at multiple resolutions, modalities and coverages
title_sort robust experimental and computational analysis framework at multiple resolutions, modalities and coverages
topic Immunology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9373800/
https://www.ncbi.nlm.nih.gov/pubmed/35967449
http://dx.doi.org/10.3389/fimmu.2022.911873
work_keys_str_mv AT tranm arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT yoons arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT teohm arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT andersens arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT lampy arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT purduebw arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT raghubara arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT hansonsj arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT devittk arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT jonesk arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT walterss arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT monkmanj arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT kulasinghea arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT tuongzk arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT soyerhp arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT frazerih arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT nguyenq arobustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT tranm robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT yoons robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT teohm robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT andersens robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT lampy robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT purduebw robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT raghubara robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT hansonsj robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT devittk robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT jonesk robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT walterss robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT monkmanj robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT kulasinghea robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT tuongzk robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT soyerhp robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT frazerih robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages
AT nguyenq robustexperimentalandcomputationalanalysisframeworkatmultipleresolutionsmodalitiesandcoverages