Cargando…
Postnatal Dexamethasone Therapy Impairs Brown Adipose Tissue Thermogenesis and Autophagy Flux in Neonatal Rat Pups
Rationale: Very preterm infants may require dexamethasone (Dex) for facilitating extubation or treating bronchopulmonary dysplasia. However, Dex may result in disturbance of metabolisms. This study was to investigate the effects of postnatal short course Dex exposure on brown adipose tissue (BAT) in...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9373816/ https://www.ncbi.nlm.nih.gov/pubmed/35966581 http://dx.doi.org/10.7150/thno.70752 |
_version_ | 1784767667478986752 |
---|---|
author | Chang, Yu-Shan Hou, Shun-Yun Yu, Shang-Shiuan Tsai, Shin-Yu Chen, Ying-Yi Hsu, Li-Jin Tsai, Pei-Jane Lin, Hui-Kuan Lin, Chyi-Her Tsai, Yau-Sheng |
author_facet | Chang, Yu-Shan Hou, Shun-Yun Yu, Shang-Shiuan Tsai, Shin-Yu Chen, Ying-Yi Hsu, Li-Jin Tsai, Pei-Jane Lin, Hui-Kuan Lin, Chyi-Her Tsai, Yau-Sheng |
author_sort | Chang, Yu-Shan |
collection | PubMed |
description | Rationale: Very preterm infants may require dexamethasone (Dex) for facilitating extubation or treating bronchopulmonary dysplasia. However, Dex may result in disturbance of metabolisms. This study was to investigate the effects of postnatal short course Dex exposure on brown adipose tissue (BAT) in neonatal rats. Method: Neonatal rats received either three consecutive doses of daily Dex (0.2 mg/kg/day) or saline from postnatal P1 to P3. We investigated the effects of Dex on BAT including thermogenesis, mitochondrial dynamics and autophagy flux. We also compared diurnal temperature variation between preterm infants who received systemic corticosteroid and their treatment-naïve controls. Results: Postnatal Dex treatment induced growth retardation, BAT whitening, UCP1 downregulation and cold intolerance in neonatal rats. BAT mitochondria were damaged, evident by loss of normal number, structure, and alignment of cristae. Mitochondrial fission-fusion balance was disrupted and skewed toward increased fusion, reflected by increased OPA1 and MFN2 and decreased DRP1, FIS1 and phosphorylated MFF protein levels. Autophagosome synthesis was increased but clearance was inhibited, indicated by accumulation of p62 protein after Dex treatment and no further increase of LC3-II after chloroquine co-treatment. While autophagy modulators, including chloroquine and rapamycin, did not improve UCP1 downregulation and BAT whitening, AMPK activators could partially rescue these damages. We also demonstrated that preterm infants had higher diurnal temperature variation during corticosteroid treatment. Conclusions: Postnatal short course Dex impaired BAT mitochondrial function and autophagy flux in rat pups. AMPK activators had the potential to rescue the damage. |
format | Online Article Text |
id | pubmed-9373816 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-93738162022-08-12 Postnatal Dexamethasone Therapy Impairs Brown Adipose Tissue Thermogenesis and Autophagy Flux in Neonatal Rat Pups Chang, Yu-Shan Hou, Shun-Yun Yu, Shang-Shiuan Tsai, Shin-Yu Chen, Ying-Yi Hsu, Li-Jin Tsai, Pei-Jane Lin, Hui-Kuan Lin, Chyi-Her Tsai, Yau-Sheng Theranostics Research Paper Rationale: Very preterm infants may require dexamethasone (Dex) for facilitating extubation or treating bronchopulmonary dysplasia. However, Dex may result in disturbance of metabolisms. This study was to investigate the effects of postnatal short course Dex exposure on brown adipose tissue (BAT) in neonatal rats. Method: Neonatal rats received either three consecutive doses of daily Dex (0.2 mg/kg/day) or saline from postnatal P1 to P3. We investigated the effects of Dex on BAT including thermogenesis, mitochondrial dynamics and autophagy flux. We also compared diurnal temperature variation between preterm infants who received systemic corticosteroid and their treatment-naïve controls. Results: Postnatal Dex treatment induced growth retardation, BAT whitening, UCP1 downregulation and cold intolerance in neonatal rats. BAT mitochondria were damaged, evident by loss of normal number, structure, and alignment of cristae. Mitochondrial fission-fusion balance was disrupted and skewed toward increased fusion, reflected by increased OPA1 and MFN2 and decreased DRP1, FIS1 and phosphorylated MFF protein levels. Autophagosome synthesis was increased but clearance was inhibited, indicated by accumulation of p62 protein after Dex treatment and no further increase of LC3-II after chloroquine co-treatment. While autophagy modulators, including chloroquine and rapamycin, did not improve UCP1 downregulation and BAT whitening, AMPK activators could partially rescue these damages. We also demonstrated that preterm infants had higher diurnal temperature variation during corticosteroid treatment. Conclusions: Postnatal short course Dex impaired BAT mitochondrial function and autophagy flux in rat pups. AMPK activators had the potential to rescue the damage. Ivyspring International Publisher 2022-07-25 /pmc/articles/PMC9373816/ /pubmed/35966581 http://dx.doi.org/10.7150/thno.70752 Text en © The author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Research Paper Chang, Yu-Shan Hou, Shun-Yun Yu, Shang-Shiuan Tsai, Shin-Yu Chen, Ying-Yi Hsu, Li-Jin Tsai, Pei-Jane Lin, Hui-Kuan Lin, Chyi-Her Tsai, Yau-Sheng Postnatal Dexamethasone Therapy Impairs Brown Adipose Tissue Thermogenesis and Autophagy Flux in Neonatal Rat Pups |
title | Postnatal Dexamethasone Therapy Impairs Brown Adipose Tissue Thermogenesis and Autophagy Flux in Neonatal Rat Pups |
title_full | Postnatal Dexamethasone Therapy Impairs Brown Adipose Tissue Thermogenesis and Autophagy Flux in Neonatal Rat Pups |
title_fullStr | Postnatal Dexamethasone Therapy Impairs Brown Adipose Tissue Thermogenesis and Autophagy Flux in Neonatal Rat Pups |
title_full_unstemmed | Postnatal Dexamethasone Therapy Impairs Brown Adipose Tissue Thermogenesis and Autophagy Flux in Neonatal Rat Pups |
title_short | Postnatal Dexamethasone Therapy Impairs Brown Adipose Tissue Thermogenesis and Autophagy Flux in Neonatal Rat Pups |
title_sort | postnatal dexamethasone therapy impairs brown adipose tissue thermogenesis and autophagy flux in neonatal rat pups |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9373816/ https://www.ncbi.nlm.nih.gov/pubmed/35966581 http://dx.doi.org/10.7150/thno.70752 |
work_keys_str_mv | AT changyushan postnataldexamethasonetherapyimpairsbrownadiposetissuethermogenesisandautophagyfluxinneonatalratpups AT houshunyun postnataldexamethasonetherapyimpairsbrownadiposetissuethermogenesisandautophagyfluxinneonatalratpups AT yushangshiuan postnataldexamethasonetherapyimpairsbrownadiposetissuethermogenesisandautophagyfluxinneonatalratpups AT tsaishinyu postnataldexamethasonetherapyimpairsbrownadiposetissuethermogenesisandautophagyfluxinneonatalratpups AT chenyingyi postnataldexamethasonetherapyimpairsbrownadiposetissuethermogenesisandautophagyfluxinneonatalratpups AT hsulijin postnataldexamethasonetherapyimpairsbrownadiposetissuethermogenesisandautophagyfluxinneonatalratpups AT tsaipeijane postnataldexamethasonetherapyimpairsbrownadiposetissuethermogenesisandautophagyfluxinneonatalratpups AT linhuikuan postnataldexamethasonetherapyimpairsbrownadiposetissuethermogenesisandautophagyfluxinneonatalratpups AT linchyiher postnataldexamethasonetherapyimpairsbrownadiposetissuethermogenesisandautophagyfluxinneonatalratpups AT tsaiyausheng postnataldexamethasonetherapyimpairsbrownadiposetissuethermogenesisandautophagyfluxinneonatalratpups |