Cargando…
Modeling SARS-CoV-2 and influenza infections and antiviral treatments in human lung epithelial tissue equivalents
There is a critical need for physiologically relevant, robust, and ready-to-use in vitro cellular assay platforms to rapidly model the infectivity of emerging viruses and develop new antiviral treatments. Here we describe the cellular complexity of human alveolar and tracheobronchial air liquid inte...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9373898/ https://www.ncbi.nlm.nih.gov/pubmed/35962146 http://dx.doi.org/10.1038/s42003-022-03753-7 |
_version_ | 1784767683586162688 |
---|---|
author | Zarkoob, Hoda Allué-Guardia, Anna Chen, Yu-Chi Garcia-Vilanova, Andreu Jung, Olive Coon, Steven Song, Min Jae Park, Jun-Gyu Oladunni, Fatai Miller, Jesse Tung, Yen-Ting Kosik, Ivan Schultz, David Iben, James Li, Tianwei Fu, Jiaqi Porter, Forbes D. Yewdell, Jonathan Martinez-Sobrido, Luis Cherry, Sara Torrelles, Jordi B. Ferrer, Marc Lee, Emily M. |
author_facet | Zarkoob, Hoda Allué-Guardia, Anna Chen, Yu-Chi Garcia-Vilanova, Andreu Jung, Olive Coon, Steven Song, Min Jae Park, Jun-Gyu Oladunni, Fatai Miller, Jesse Tung, Yen-Ting Kosik, Ivan Schultz, David Iben, James Li, Tianwei Fu, Jiaqi Porter, Forbes D. Yewdell, Jonathan Martinez-Sobrido, Luis Cherry, Sara Torrelles, Jordi B. Ferrer, Marc Lee, Emily M. |
author_sort | Zarkoob, Hoda |
collection | PubMed |
description | There is a critical need for physiologically relevant, robust, and ready-to-use in vitro cellular assay platforms to rapidly model the infectivity of emerging viruses and develop new antiviral treatments. Here we describe the cellular complexity of human alveolar and tracheobronchial air liquid interface (ALI) tissue models during SARS-CoV-2 and influenza A virus (IAV) infections. Our results showed that both SARS-CoV-2 and IAV effectively infect these ALI tissues, with SARS-CoV-2 exhibiting a slower replication peaking at later time-points compared to IAV. We detected tissue-specific chemokine and cytokine storms in response to viral infection, including well-defined biomarkers in severe SARS-CoV-2 and IAV infections such as CXCL10, IL-6, and IL-10. Our single-cell RNA sequencing analysis showed similar findings to that found in vivo for SARS-CoV-2 infection, including dampened IFN response, increased chemokine induction, and inhibition of MHC Class I presentation not observed for IAV infected tissues. Finally, we demonstrate the pharmacological validity of these ALI tissue models as antiviral drug screening assay platforms, with the potential to be easily adapted to include other cell types and increase the throughput to test relevant pathogens. |
format | Online Article Text |
id | pubmed-9373898 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-93738982022-08-12 Modeling SARS-CoV-2 and influenza infections and antiviral treatments in human lung epithelial tissue equivalents Zarkoob, Hoda Allué-Guardia, Anna Chen, Yu-Chi Garcia-Vilanova, Andreu Jung, Olive Coon, Steven Song, Min Jae Park, Jun-Gyu Oladunni, Fatai Miller, Jesse Tung, Yen-Ting Kosik, Ivan Schultz, David Iben, James Li, Tianwei Fu, Jiaqi Porter, Forbes D. Yewdell, Jonathan Martinez-Sobrido, Luis Cherry, Sara Torrelles, Jordi B. Ferrer, Marc Lee, Emily M. Commun Biol Article There is a critical need for physiologically relevant, robust, and ready-to-use in vitro cellular assay platforms to rapidly model the infectivity of emerging viruses and develop new antiviral treatments. Here we describe the cellular complexity of human alveolar and tracheobronchial air liquid interface (ALI) tissue models during SARS-CoV-2 and influenza A virus (IAV) infections. Our results showed that both SARS-CoV-2 and IAV effectively infect these ALI tissues, with SARS-CoV-2 exhibiting a slower replication peaking at later time-points compared to IAV. We detected tissue-specific chemokine and cytokine storms in response to viral infection, including well-defined biomarkers in severe SARS-CoV-2 and IAV infections such as CXCL10, IL-6, and IL-10. Our single-cell RNA sequencing analysis showed similar findings to that found in vivo for SARS-CoV-2 infection, including dampened IFN response, increased chemokine induction, and inhibition of MHC Class I presentation not observed for IAV infected tissues. Finally, we demonstrate the pharmacological validity of these ALI tissue models as antiviral drug screening assay platforms, with the potential to be easily adapted to include other cell types and increase the throughput to test relevant pathogens. Nature Publishing Group UK 2022-08-12 /pmc/articles/PMC9373898/ /pubmed/35962146 http://dx.doi.org/10.1038/s42003-022-03753-7 Text en © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Zarkoob, Hoda Allué-Guardia, Anna Chen, Yu-Chi Garcia-Vilanova, Andreu Jung, Olive Coon, Steven Song, Min Jae Park, Jun-Gyu Oladunni, Fatai Miller, Jesse Tung, Yen-Ting Kosik, Ivan Schultz, David Iben, James Li, Tianwei Fu, Jiaqi Porter, Forbes D. Yewdell, Jonathan Martinez-Sobrido, Luis Cherry, Sara Torrelles, Jordi B. Ferrer, Marc Lee, Emily M. Modeling SARS-CoV-2 and influenza infections and antiviral treatments in human lung epithelial tissue equivalents |
title | Modeling SARS-CoV-2 and influenza infections and antiviral treatments in human lung epithelial tissue equivalents |
title_full | Modeling SARS-CoV-2 and influenza infections and antiviral treatments in human lung epithelial tissue equivalents |
title_fullStr | Modeling SARS-CoV-2 and influenza infections and antiviral treatments in human lung epithelial tissue equivalents |
title_full_unstemmed | Modeling SARS-CoV-2 and influenza infections and antiviral treatments in human lung epithelial tissue equivalents |
title_short | Modeling SARS-CoV-2 and influenza infections and antiviral treatments in human lung epithelial tissue equivalents |
title_sort | modeling sars-cov-2 and influenza infections and antiviral treatments in human lung epithelial tissue equivalents |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9373898/ https://www.ncbi.nlm.nih.gov/pubmed/35962146 http://dx.doi.org/10.1038/s42003-022-03753-7 |
work_keys_str_mv | AT zarkoobhoda modelingsarscov2andinfluenzainfectionsandantiviraltreatmentsinhumanlungepithelialtissueequivalents AT allueguardiaanna modelingsarscov2andinfluenzainfectionsandantiviraltreatmentsinhumanlungepithelialtissueequivalents AT chenyuchi modelingsarscov2andinfluenzainfectionsandantiviraltreatmentsinhumanlungepithelialtissueequivalents AT garciavilanovaandreu modelingsarscov2andinfluenzainfectionsandantiviraltreatmentsinhumanlungepithelialtissueequivalents AT jungolive modelingsarscov2andinfluenzainfectionsandantiviraltreatmentsinhumanlungepithelialtissueequivalents AT coonsteven modelingsarscov2andinfluenzainfectionsandantiviraltreatmentsinhumanlungepithelialtissueequivalents AT songminjae modelingsarscov2andinfluenzainfectionsandantiviraltreatmentsinhumanlungepithelialtissueequivalents AT parkjungyu modelingsarscov2andinfluenzainfectionsandantiviraltreatmentsinhumanlungepithelialtissueequivalents AT oladunnifatai modelingsarscov2andinfluenzainfectionsandantiviraltreatmentsinhumanlungepithelialtissueequivalents AT millerjesse modelingsarscov2andinfluenzainfectionsandantiviraltreatmentsinhumanlungepithelialtissueequivalents AT tungyenting modelingsarscov2andinfluenzainfectionsandantiviraltreatmentsinhumanlungepithelialtissueequivalents AT kosikivan modelingsarscov2andinfluenzainfectionsandantiviraltreatmentsinhumanlungepithelialtissueequivalents AT schultzdavid modelingsarscov2andinfluenzainfectionsandantiviraltreatmentsinhumanlungepithelialtissueequivalents AT ibenjames modelingsarscov2andinfluenzainfectionsandantiviraltreatmentsinhumanlungepithelialtissueequivalents AT litianwei modelingsarscov2andinfluenzainfectionsandantiviraltreatmentsinhumanlungepithelialtissueequivalents AT fujiaqi modelingsarscov2andinfluenzainfectionsandantiviraltreatmentsinhumanlungepithelialtissueequivalents AT porterforbesd modelingsarscov2andinfluenzainfectionsandantiviraltreatmentsinhumanlungepithelialtissueequivalents AT yewdelljonathan modelingsarscov2andinfluenzainfectionsandantiviraltreatmentsinhumanlungepithelialtissueequivalents AT martinezsobridoluis modelingsarscov2andinfluenzainfectionsandantiviraltreatmentsinhumanlungepithelialtissueequivalents AT cherrysara modelingsarscov2andinfluenzainfectionsandantiviraltreatmentsinhumanlungepithelialtissueequivalents AT torrellesjordib modelingsarscov2andinfluenzainfectionsandantiviraltreatmentsinhumanlungepithelialtissueequivalents AT ferrermarc modelingsarscov2andinfluenzainfectionsandantiviraltreatmentsinhumanlungepithelialtissueequivalents AT leeemilym modelingsarscov2andinfluenzainfectionsandantiviraltreatmentsinhumanlungepithelialtissueequivalents |