Cargando…
Developing a Long COVID Phenotype for Postacute COVID-19 in a National Primary Care Sentinel Cohort: Observational Retrospective Database Analysis
BACKGROUND: Following COVID-19, up to 40% of people have ongoing health problems, referred to as postacute COVID-19 or long COVID (LC). LC varies from a single persisting symptom to a complex multisystem disease. Research has flagged that this condition is underrecorded in primary care records, and...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374163/ https://www.ncbi.nlm.nih.gov/pubmed/35861678 http://dx.doi.org/10.2196/36989 |
_version_ | 1784767729580900352 |
---|---|
author | Mayor, Nikhil Meza-Torres, Bernardo Okusi, Cecilia Delanerolle, Gayathri Chapman, Martin Wang, Wenjuan Anand, Sneha Feher, Michael Macartney, Jack Byford, Rachel Joy, Mark Gatenby, Piers Curcin, Vasa Greenhalgh, Trisha Delaney, Brendan de Lusignan, Simon |
author_facet | Mayor, Nikhil Meza-Torres, Bernardo Okusi, Cecilia Delanerolle, Gayathri Chapman, Martin Wang, Wenjuan Anand, Sneha Feher, Michael Macartney, Jack Byford, Rachel Joy, Mark Gatenby, Piers Curcin, Vasa Greenhalgh, Trisha Delaney, Brendan de Lusignan, Simon |
author_sort | Mayor, Nikhil |
collection | PubMed |
description | BACKGROUND: Following COVID-19, up to 40% of people have ongoing health problems, referred to as postacute COVID-19 or long COVID (LC). LC varies from a single persisting symptom to a complex multisystem disease. Research has flagged that this condition is underrecorded in primary care records, and seeks to better define its clinical characteristics and management. Phenotypes provide a standard method for case definition and identification from routine data and are usually machine-processable. An LC phenotype can underpin research into this condition. OBJECTIVE: This study aims to develop a phenotype for LC to inform the epidemiology and future research into this condition. We compared clinical symptoms in people with LC before and after their index infection, recorded from March 1, 2020, to April 1, 2021. We also compared people recorded as having acute infection with those with LC who were hospitalized and those who were not. METHODS: We used data from the Primary Care Sentinel Cohort (PCSC) of the Oxford Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) database. This network was recruited to be nationally representative of the English population. We developed an LC phenotype using our established 3-step ontological method: (1) ontological step (defining the reasoning process underpinning the phenotype, (2) coding step (exploring what clinical terms are available, and (3) logical extract model (testing performance). We created a version of this phenotype using Protégé in the ontology web language for BioPortal and using PhenoFlow. Next, we used the phenotype to compare people with LC (1) with regard to their symptoms in the year prior to acquiring COVID-19 and (2) with people with acute COVID-19. We also compared hospitalized people with LC with those not hospitalized. We compared sociodemographic details, comorbidities, and Office of National Statistics–defined LC symptoms between groups. We used descriptive statistics and logistic regression. RESULTS: The long-COVID phenotype differentiated people hospitalized with LC from people who were not and where no index infection was identified. The PCSC (N=7.4 million) includes 428,479 patients with acute COVID-19 diagnosis confirmed by a laboratory test and 10,772 patients with clinically diagnosed COVID-19. A total of 7471 (1.74%, 95% CI 1.70-1.78) people were coded as having LC, 1009 (13.5%, 95% CI 12.7-14.3) had a hospital admission related to acute COVID-19, and 6462 (86.5%, 95% CI 85.7-87.3) were not hospitalized, of whom 2728 (42.2%) had no COVID-19 index date recorded. In addition, 1009 (13.5%, 95% CI 12.73-14.28) people with LC were hospitalized compared to 17,993 (4.5%, 95% CI 4.48-4.61; P<.001) with uncomplicated COVID-19. CONCLUSIONS: Our LC phenotype enables the identification of individuals with the condition in routine data sets, facilitating their comparison with unaffected people through retrospective research. This phenotype and study protocol to explore its face validity contributes to a better understanding of LC. |
format | Online Article Text |
id | pubmed-9374163 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | JMIR Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-93741632022-08-13 Developing a Long COVID Phenotype for Postacute COVID-19 in a National Primary Care Sentinel Cohort: Observational Retrospective Database Analysis Mayor, Nikhil Meza-Torres, Bernardo Okusi, Cecilia Delanerolle, Gayathri Chapman, Martin Wang, Wenjuan Anand, Sneha Feher, Michael Macartney, Jack Byford, Rachel Joy, Mark Gatenby, Piers Curcin, Vasa Greenhalgh, Trisha Delaney, Brendan de Lusignan, Simon JMIR Public Health Surveill Original Paper BACKGROUND: Following COVID-19, up to 40% of people have ongoing health problems, referred to as postacute COVID-19 or long COVID (LC). LC varies from a single persisting symptom to a complex multisystem disease. Research has flagged that this condition is underrecorded in primary care records, and seeks to better define its clinical characteristics and management. Phenotypes provide a standard method for case definition and identification from routine data and are usually machine-processable. An LC phenotype can underpin research into this condition. OBJECTIVE: This study aims to develop a phenotype for LC to inform the epidemiology and future research into this condition. We compared clinical symptoms in people with LC before and after their index infection, recorded from March 1, 2020, to April 1, 2021. We also compared people recorded as having acute infection with those with LC who were hospitalized and those who were not. METHODS: We used data from the Primary Care Sentinel Cohort (PCSC) of the Oxford Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) database. This network was recruited to be nationally representative of the English population. We developed an LC phenotype using our established 3-step ontological method: (1) ontological step (defining the reasoning process underpinning the phenotype, (2) coding step (exploring what clinical terms are available, and (3) logical extract model (testing performance). We created a version of this phenotype using Protégé in the ontology web language for BioPortal and using PhenoFlow. Next, we used the phenotype to compare people with LC (1) with regard to their symptoms in the year prior to acquiring COVID-19 and (2) with people with acute COVID-19. We also compared hospitalized people with LC with those not hospitalized. We compared sociodemographic details, comorbidities, and Office of National Statistics–defined LC symptoms between groups. We used descriptive statistics and logistic regression. RESULTS: The long-COVID phenotype differentiated people hospitalized with LC from people who were not and where no index infection was identified. The PCSC (N=7.4 million) includes 428,479 patients with acute COVID-19 diagnosis confirmed by a laboratory test and 10,772 patients with clinically diagnosed COVID-19. A total of 7471 (1.74%, 95% CI 1.70-1.78) people were coded as having LC, 1009 (13.5%, 95% CI 12.7-14.3) had a hospital admission related to acute COVID-19, and 6462 (86.5%, 95% CI 85.7-87.3) were not hospitalized, of whom 2728 (42.2%) had no COVID-19 index date recorded. In addition, 1009 (13.5%, 95% CI 12.73-14.28) people with LC were hospitalized compared to 17,993 (4.5%, 95% CI 4.48-4.61; P<.001) with uncomplicated COVID-19. CONCLUSIONS: Our LC phenotype enables the identification of individuals with the condition in routine data sets, facilitating their comparison with unaffected people through retrospective research. This phenotype and study protocol to explore its face validity contributes to a better understanding of LC. JMIR Publications 2022-08-11 /pmc/articles/PMC9374163/ /pubmed/35861678 http://dx.doi.org/10.2196/36989 Text en ©Nikhil Mayor, Bernardo Meza-Torres, Cecilia Okusi, Gayathri Delanerolle, Martin Chapman, Wenjuan Wang, Sneha Anand, Michael Feher, Jack Macartney, Rachel Byford, Mark Joy, Piers Gatenby, Vasa Curcin, Trisha Greenhalgh, Brendan Delaney, Simon de Lusignan. Originally published in JMIR Public Health and Surveillance (https://publichealth.jmir.org), 11.08.2022. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Public Health and Surveillance, is properly cited. The complete bibliographic information, a link to the original publication on https://publichealth.jmir.org, as well as this copyright and license information must be included. |
spellingShingle | Original Paper Mayor, Nikhil Meza-Torres, Bernardo Okusi, Cecilia Delanerolle, Gayathri Chapman, Martin Wang, Wenjuan Anand, Sneha Feher, Michael Macartney, Jack Byford, Rachel Joy, Mark Gatenby, Piers Curcin, Vasa Greenhalgh, Trisha Delaney, Brendan de Lusignan, Simon Developing a Long COVID Phenotype for Postacute COVID-19 in a National Primary Care Sentinel Cohort: Observational Retrospective Database Analysis |
title | Developing a Long COVID Phenotype for Postacute COVID-19 in a National Primary Care Sentinel Cohort: Observational Retrospective Database Analysis |
title_full | Developing a Long COVID Phenotype for Postacute COVID-19 in a National Primary Care Sentinel Cohort: Observational Retrospective Database Analysis |
title_fullStr | Developing a Long COVID Phenotype for Postacute COVID-19 in a National Primary Care Sentinel Cohort: Observational Retrospective Database Analysis |
title_full_unstemmed | Developing a Long COVID Phenotype for Postacute COVID-19 in a National Primary Care Sentinel Cohort: Observational Retrospective Database Analysis |
title_short | Developing a Long COVID Phenotype for Postacute COVID-19 in a National Primary Care Sentinel Cohort: Observational Retrospective Database Analysis |
title_sort | developing a long covid phenotype for postacute covid-19 in a national primary care sentinel cohort: observational retrospective database analysis |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374163/ https://www.ncbi.nlm.nih.gov/pubmed/35861678 http://dx.doi.org/10.2196/36989 |
work_keys_str_mv | AT mayornikhil developingalongcovidphenotypeforpostacutecovid19inanationalprimarycaresentinelcohortobservationalretrospectivedatabaseanalysis AT mezatorresbernardo developingalongcovidphenotypeforpostacutecovid19inanationalprimarycaresentinelcohortobservationalretrospectivedatabaseanalysis AT okusicecilia developingalongcovidphenotypeforpostacutecovid19inanationalprimarycaresentinelcohortobservationalretrospectivedatabaseanalysis AT delanerollegayathri developingalongcovidphenotypeforpostacutecovid19inanationalprimarycaresentinelcohortobservationalretrospectivedatabaseanalysis AT chapmanmartin developingalongcovidphenotypeforpostacutecovid19inanationalprimarycaresentinelcohortobservationalretrospectivedatabaseanalysis AT wangwenjuan developingalongcovidphenotypeforpostacutecovid19inanationalprimarycaresentinelcohortobservationalretrospectivedatabaseanalysis AT anandsneha developingalongcovidphenotypeforpostacutecovid19inanationalprimarycaresentinelcohortobservationalretrospectivedatabaseanalysis AT fehermichael developingalongcovidphenotypeforpostacutecovid19inanationalprimarycaresentinelcohortobservationalretrospectivedatabaseanalysis AT macartneyjack developingalongcovidphenotypeforpostacutecovid19inanationalprimarycaresentinelcohortobservationalretrospectivedatabaseanalysis AT byfordrachel developingalongcovidphenotypeforpostacutecovid19inanationalprimarycaresentinelcohortobservationalretrospectivedatabaseanalysis AT joymark developingalongcovidphenotypeforpostacutecovid19inanationalprimarycaresentinelcohortobservationalretrospectivedatabaseanalysis AT gatenbypiers developingalongcovidphenotypeforpostacutecovid19inanationalprimarycaresentinelcohortobservationalretrospectivedatabaseanalysis AT curcinvasa developingalongcovidphenotypeforpostacutecovid19inanationalprimarycaresentinelcohortobservationalretrospectivedatabaseanalysis AT greenhalghtrisha developingalongcovidphenotypeforpostacutecovid19inanationalprimarycaresentinelcohortobservationalretrospectivedatabaseanalysis AT delaneybrendan developingalongcovidphenotypeforpostacutecovid19inanationalprimarycaresentinelcohortobservationalretrospectivedatabaseanalysis AT delusignansimon developingalongcovidphenotypeforpostacutecovid19inanationalprimarycaresentinelcohortobservationalretrospectivedatabaseanalysis |