Cargando…
Causal graph extraction from news: a comparative study of time-series causality learning techniques
Causal graph extraction from news has the potential to aid in the understanding of complex scenarios. In particular, it can help explain and predict events, as well as conjecture about possible cause-effect connections. However, limited work has addressed the problem of large-scale extraction of cau...
Autores principales: | Maisonnave, Mariano, Delbianco, Fernando, Tohme, Fernando, Milios, Evangelos, Maguitman, Ana G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374167/ https://www.ncbi.nlm.nih.gov/pubmed/35967930 http://dx.doi.org/10.7717/peerj-cs.1066 |
Ejemplares similares
-
Spatio-temporal causal graph attention network for traffic flow prediction in intelligent transportation systems
por: Zhao, Wei, et al.
Publicado: (2023) -
DeepCausality: A general AI-powered causal inference framework for free text: A case study of LiverTox
por: Wang, Xingqiao, et al.
Publicado: (2022) -
Targeting resources efficiently and justifiably by combining causal machine learning and theory
por: Gur Ali, Ozden
Publicado: (2022) -
Temporal network embedding framework with causal anonymous walks representations
por: Makarov, Ilya, et al.
Publicado: (2022) -
InferBERT: A Transformer-Based Causal Inference Framework for Enhancing Pharmacovigilance
por: Wang, Xingqiao, et al.
Publicado: (2021)