Cargando…

Disparities in dermatology AI performance on a diverse, curated clinical image set

An estimated 3 billion people lack access to dermatological care globally. Artificial intelligence (AI) may aid in triaging skin diseases and identifying malignancies. However, most AI models have not been assessed on images of diverse skin tones or uncommon diseases. Thus, we created the Diverse De...

Descripción completa

Detalles Bibliográficos
Autores principales: Daneshjou, Roxana, Vodrahalli, Kailas, Novoa, Roberto A., Jenkins, Melissa, Liang, Weixin, Rotemberg, Veronica, Ko, Justin, Swetter, Susan M., Bailey, Elizabeth E., Gevaert, Olivier, Mukherjee, Pritam, Phung, Michelle, Yekrang, Kiana, Fong, Bradley, Sahasrabudhe, Rachna, Allerup, Johan A. C., Okata-Karigane, Utako, Zou, James, Chiou, Albert S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374341/
https://www.ncbi.nlm.nih.gov/pubmed/35960806
http://dx.doi.org/10.1126/sciadv.abq6147
_version_ 1784767772036694016
author Daneshjou, Roxana
Vodrahalli, Kailas
Novoa, Roberto A.
Jenkins, Melissa
Liang, Weixin
Rotemberg, Veronica
Ko, Justin
Swetter, Susan M.
Bailey, Elizabeth E.
Gevaert, Olivier
Mukherjee, Pritam
Phung, Michelle
Yekrang, Kiana
Fong, Bradley
Sahasrabudhe, Rachna
Allerup, Johan A. C.
Okata-Karigane, Utako
Zou, James
Chiou, Albert S.
author_facet Daneshjou, Roxana
Vodrahalli, Kailas
Novoa, Roberto A.
Jenkins, Melissa
Liang, Weixin
Rotemberg, Veronica
Ko, Justin
Swetter, Susan M.
Bailey, Elizabeth E.
Gevaert, Olivier
Mukherjee, Pritam
Phung, Michelle
Yekrang, Kiana
Fong, Bradley
Sahasrabudhe, Rachna
Allerup, Johan A. C.
Okata-Karigane, Utako
Zou, James
Chiou, Albert S.
author_sort Daneshjou, Roxana
collection PubMed
description An estimated 3 billion people lack access to dermatological care globally. Artificial intelligence (AI) may aid in triaging skin diseases and identifying malignancies. However, most AI models have not been assessed on images of diverse skin tones or uncommon diseases. Thus, we created the Diverse Dermatology Images (DDI) dataset—the first publicly available, expertly curated, and pathologically confirmed image dataset with diverse skin tones. We show that state-of-the-art dermatology AI models exhibit substantial limitations on the DDI dataset, particularly on dark skin tones and uncommon diseases. We find that dermatologists, who often label AI datasets, also perform worse on images of dark skin tones and uncommon diseases. Fine-tuning AI models on the DDI images closes the performance gap between light and dark skin tones. These findings identify important weaknesses and biases in dermatology AI that should be addressed for reliable application to diverse patients and diseases.
format Online
Article
Text
id pubmed-9374341
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-93743412022-08-18 Disparities in dermatology AI performance on a diverse, curated clinical image set Daneshjou, Roxana Vodrahalli, Kailas Novoa, Roberto A. Jenkins, Melissa Liang, Weixin Rotemberg, Veronica Ko, Justin Swetter, Susan M. Bailey, Elizabeth E. Gevaert, Olivier Mukherjee, Pritam Phung, Michelle Yekrang, Kiana Fong, Bradley Sahasrabudhe, Rachna Allerup, Johan A. C. Okata-Karigane, Utako Zou, James Chiou, Albert S. Sci Adv Social and Interdisciplinary Sciences An estimated 3 billion people lack access to dermatological care globally. Artificial intelligence (AI) may aid in triaging skin diseases and identifying malignancies. However, most AI models have not been assessed on images of diverse skin tones or uncommon diseases. Thus, we created the Diverse Dermatology Images (DDI) dataset—the first publicly available, expertly curated, and pathologically confirmed image dataset with diverse skin tones. We show that state-of-the-art dermatology AI models exhibit substantial limitations on the DDI dataset, particularly on dark skin tones and uncommon diseases. We find that dermatologists, who often label AI datasets, also perform worse on images of dark skin tones and uncommon diseases. Fine-tuning AI models on the DDI images closes the performance gap between light and dark skin tones. These findings identify important weaknesses and biases in dermatology AI that should be addressed for reliable application to diverse patients and diseases. American Association for the Advancement of Science 2022-08-12 /pmc/articles/PMC9374341/ /pubmed/35960806 http://dx.doi.org/10.1126/sciadv.abq6147 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Social and Interdisciplinary Sciences
Daneshjou, Roxana
Vodrahalli, Kailas
Novoa, Roberto A.
Jenkins, Melissa
Liang, Weixin
Rotemberg, Veronica
Ko, Justin
Swetter, Susan M.
Bailey, Elizabeth E.
Gevaert, Olivier
Mukherjee, Pritam
Phung, Michelle
Yekrang, Kiana
Fong, Bradley
Sahasrabudhe, Rachna
Allerup, Johan A. C.
Okata-Karigane, Utako
Zou, James
Chiou, Albert S.
Disparities in dermatology AI performance on a diverse, curated clinical image set
title Disparities in dermatology AI performance on a diverse, curated clinical image set
title_full Disparities in dermatology AI performance on a diverse, curated clinical image set
title_fullStr Disparities in dermatology AI performance on a diverse, curated clinical image set
title_full_unstemmed Disparities in dermatology AI performance on a diverse, curated clinical image set
title_short Disparities in dermatology AI performance on a diverse, curated clinical image set
title_sort disparities in dermatology ai performance on a diverse, curated clinical image set
topic Social and Interdisciplinary Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374341/
https://www.ncbi.nlm.nih.gov/pubmed/35960806
http://dx.doi.org/10.1126/sciadv.abq6147
work_keys_str_mv AT daneshjouroxana disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset
AT vodrahallikailas disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset
AT novoarobertoa disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset
AT jenkinsmelissa disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset
AT liangweixin disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset
AT rotembergveronica disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset
AT kojustin disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset
AT swettersusanm disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset
AT baileyelizabethe disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset
AT gevaertolivier disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset
AT mukherjeepritam disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset
AT phungmichelle disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset
AT yekrangkiana disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset
AT fongbradley disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset
AT sahasrabudherachna disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset
AT allerupjohanac disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset
AT okatakariganeutako disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset
AT zoujames disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset
AT chioualberts disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset