Cargando…
Disparities in dermatology AI performance on a diverse, curated clinical image set
An estimated 3 billion people lack access to dermatological care globally. Artificial intelligence (AI) may aid in triaging skin diseases and identifying malignancies. However, most AI models have not been assessed on images of diverse skin tones or uncommon diseases. Thus, we created the Diverse De...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374341/ https://www.ncbi.nlm.nih.gov/pubmed/35960806 http://dx.doi.org/10.1126/sciadv.abq6147 |
_version_ | 1784767772036694016 |
---|---|
author | Daneshjou, Roxana Vodrahalli, Kailas Novoa, Roberto A. Jenkins, Melissa Liang, Weixin Rotemberg, Veronica Ko, Justin Swetter, Susan M. Bailey, Elizabeth E. Gevaert, Olivier Mukherjee, Pritam Phung, Michelle Yekrang, Kiana Fong, Bradley Sahasrabudhe, Rachna Allerup, Johan A. C. Okata-Karigane, Utako Zou, James Chiou, Albert S. |
author_facet | Daneshjou, Roxana Vodrahalli, Kailas Novoa, Roberto A. Jenkins, Melissa Liang, Weixin Rotemberg, Veronica Ko, Justin Swetter, Susan M. Bailey, Elizabeth E. Gevaert, Olivier Mukherjee, Pritam Phung, Michelle Yekrang, Kiana Fong, Bradley Sahasrabudhe, Rachna Allerup, Johan A. C. Okata-Karigane, Utako Zou, James Chiou, Albert S. |
author_sort | Daneshjou, Roxana |
collection | PubMed |
description | An estimated 3 billion people lack access to dermatological care globally. Artificial intelligence (AI) may aid in triaging skin diseases and identifying malignancies. However, most AI models have not been assessed on images of diverse skin tones or uncommon diseases. Thus, we created the Diverse Dermatology Images (DDI) dataset—the first publicly available, expertly curated, and pathologically confirmed image dataset with diverse skin tones. We show that state-of-the-art dermatology AI models exhibit substantial limitations on the DDI dataset, particularly on dark skin tones and uncommon diseases. We find that dermatologists, who often label AI datasets, also perform worse on images of dark skin tones and uncommon diseases. Fine-tuning AI models on the DDI images closes the performance gap between light and dark skin tones. These findings identify important weaknesses and biases in dermatology AI that should be addressed for reliable application to diverse patients and diseases. |
format | Online Article Text |
id | pubmed-9374341 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-93743412022-08-18 Disparities in dermatology AI performance on a diverse, curated clinical image set Daneshjou, Roxana Vodrahalli, Kailas Novoa, Roberto A. Jenkins, Melissa Liang, Weixin Rotemberg, Veronica Ko, Justin Swetter, Susan M. Bailey, Elizabeth E. Gevaert, Olivier Mukherjee, Pritam Phung, Michelle Yekrang, Kiana Fong, Bradley Sahasrabudhe, Rachna Allerup, Johan A. C. Okata-Karigane, Utako Zou, James Chiou, Albert S. Sci Adv Social and Interdisciplinary Sciences An estimated 3 billion people lack access to dermatological care globally. Artificial intelligence (AI) may aid in triaging skin diseases and identifying malignancies. However, most AI models have not been assessed on images of diverse skin tones or uncommon diseases. Thus, we created the Diverse Dermatology Images (DDI) dataset—the first publicly available, expertly curated, and pathologically confirmed image dataset with diverse skin tones. We show that state-of-the-art dermatology AI models exhibit substantial limitations on the DDI dataset, particularly on dark skin tones and uncommon diseases. We find that dermatologists, who often label AI datasets, also perform worse on images of dark skin tones and uncommon diseases. Fine-tuning AI models on the DDI images closes the performance gap between light and dark skin tones. These findings identify important weaknesses and biases in dermatology AI that should be addressed for reliable application to diverse patients and diseases. American Association for the Advancement of Science 2022-08-12 /pmc/articles/PMC9374341/ /pubmed/35960806 http://dx.doi.org/10.1126/sciadv.abq6147 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Social and Interdisciplinary Sciences Daneshjou, Roxana Vodrahalli, Kailas Novoa, Roberto A. Jenkins, Melissa Liang, Weixin Rotemberg, Veronica Ko, Justin Swetter, Susan M. Bailey, Elizabeth E. Gevaert, Olivier Mukherjee, Pritam Phung, Michelle Yekrang, Kiana Fong, Bradley Sahasrabudhe, Rachna Allerup, Johan A. C. Okata-Karigane, Utako Zou, James Chiou, Albert S. Disparities in dermatology AI performance on a diverse, curated clinical image set |
title | Disparities in dermatology AI performance on a diverse, curated clinical image set |
title_full | Disparities in dermatology AI performance on a diverse, curated clinical image set |
title_fullStr | Disparities in dermatology AI performance on a diverse, curated clinical image set |
title_full_unstemmed | Disparities in dermatology AI performance on a diverse, curated clinical image set |
title_short | Disparities in dermatology AI performance on a diverse, curated clinical image set |
title_sort | disparities in dermatology ai performance on a diverse, curated clinical image set |
topic | Social and Interdisciplinary Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374341/ https://www.ncbi.nlm.nih.gov/pubmed/35960806 http://dx.doi.org/10.1126/sciadv.abq6147 |
work_keys_str_mv | AT daneshjouroxana disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset AT vodrahallikailas disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset AT novoarobertoa disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset AT jenkinsmelissa disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset AT liangweixin disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset AT rotembergveronica disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset AT kojustin disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset AT swettersusanm disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset AT baileyelizabethe disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset AT gevaertolivier disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset AT mukherjeepritam disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset AT phungmichelle disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset AT yekrangkiana disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset AT fongbradley disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset AT sahasrabudherachna disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset AT allerupjohanac disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset AT okatakariganeutako disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset AT zoujames disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset AT chioualberts disparitiesindermatologyaiperformanceonadiversecuratedclinicalimageset |