Cargando…
Flexible and efficient simulation-based inference for models of decision-making
Inferring parameters of computational models that capture experimental data is a central task in cognitive neuroscience. Bayesian statistical inference methods usually require the ability to evaluate the likelihood of the model—however, for many models of interest in cognitive neuroscience, the asso...
Autores principales: | Boelts, Jan, Lueckmann, Jan-Matthis, Gao, Richard, Macke, Jakob H |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374439/ https://www.ncbi.nlm.nih.gov/pubmed/35894305 http://dx.doi.org/10.7554/eLife.77220 |
Ejemplares similares
-
Simulation-based inference for efficient identification of generative models in computational connectomics
por: Boelts, Jan, et al.
Publicado: (2023) -
Can Serial Dependencies in Choices and Neural Activity Explain Choice Probabilities?
por: Lueckmann, Jan-Matthis, et al.
Publicado: (2018) -
Spatiotemporal dynamics of random stimuli account for trial-to-trial variability in perceptual decision making
por: Park, Hame, et al.
Publicado: (2016) -
Bayesian Inference for Generalized Linear Models for Spiking Neurons
por: Gerwinn, Sebastian, et al.
Publicado: (2010) -
Pre-stimulus phase and amplitude regulation of phase-locked responses are maximized in the critical state
por: Avramiea, Arthur-Ervin, et al.
Publicado: (2020)