Cargando…
Predicting treatment response using EEG in major depressive disorder: A machine-learning meta-analysis
Selecting a course of treatment in psychiatry remains a trial-and-error process, and this long-standing clinical challenge has prompted an increased focus on predictive models of treatment response using machine learning techniques. Electroencephalography (EEG) represents a cost-effective and scalab...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374666/ https://www.ncbi.nlm.nih.gov/pubmed/35961967 http://dx.doi.org/10.1038/s41398-022-02064-z |
_version_ | 1784767835585642496 |
---|---|
author | Watts, Devon Pulice, Rafaela Fernandes Reilly, Jim Brunoni, Andre R. Kapczinski, Flávio Passos, Ives Cavalcante |
author_facet | Watts, Devon Pulice, Rafaela Fernandes Reilly, Jim Brunoni, Andre R. Kapczinski, Flávio Passos, Ives Cavalcante |
author_sort | Watts, Devon |
collection | PubMed |
description | Selecting a course of treatment in psychiatry remains a trial-and-error process, and this long-standing clinical challenge has prompted an increased focus on predictive models of treatment response using machine learning techniques. Electroencephalography (EEG) represents a cost-effective and scalable potential measure to predict treatment response to major depressive disorder. We performed separate meta-analyses to determine the ability of models to distinguish between responders and non-responders using EEG across treatments, as well as a performed subgroup analysis of response to transcranial magnetic stimulation (rTMS), and antidepressants (Registration Number: CRD42021257477) in Major Depressive Disorder by searching PubMed, Scopus, and Web of Science for articles published between January 1960 and February 2022. We included 15 studies that predicted treatment responses among patients with major depressive disorder using machine-learning techniques. Within a random-effects model with a restricted maximum likelihood estimator comprising 758 patients, the pooled accuracy across studies was 83.93% (95% CI: 78.90–89.29), with an Area-Under-the-Curve (AUC) of 0.850 (95% CI: 0.747–0.890), and partial AUC of 0.779. The average sensitivity and specificity across models were 77.96% (95% CI: 60.05–88.70), and 84.60% (95% CI: 67.89–92.39), respectively. In a subgroup analysis, greater performance was observed in predicting response to rTMS (Pooled accuracy: 85.70% (95% CI: 77.45–94.83), Area-Under-the-Curve (AUC): 0.928, partial AUC: 0.844), relative to antidepressants (Pooled accuracy: 81.41% (95% CI: 77.45–94.83, AUC: 0.895, pAUC: 0.821). Furthermore, across all meta-analyses, the specificity (true negatives) of EEG models was greater than the sensitivity (true positives), suggesting that EEG models thus far better identify non-responders than responders to treatment in MDD. Studies varied widely in important features across models, although relevant features included absolute and relative power in frontal and temporal electrodes, measures of connectivity, and asymmetry across hemispheres. Predictive models of treatment response using EEG hold promise in major depressive disorder, although there is a need for prospective model validation in independent datasets, and a greater emphasis on replicating physiological markers. Crucially, standardization in cut-off values and clinical scales for defining clinical response and non-response will aid in the reproducibility of findings and the clinical utility of predictive models. Furthermore, several models thus far have used data from open-label trials with small sample sizes and evaluated performance in the absence of training and testing sets, which increases the risk of statistical overfitting. Large consortium studies are required to establish predictive signatures of treatment response using EEG, and better elucidate the replicability of specific markers. Additionally, it is speculated that greater performance was observed in rTMS models, since EEG is assessing neural networks more likely to be directly targeted by rTMS, comprising electrical activity primarily near the surface of the cortex. Prospectively, there is a need for models that examine the comparative effectiveness of multiple treatments across the same patients. However, this will require a thoughtful consideration towards cumulative treatment effects, and whether washout periods between treatments should be utilised. Regardless, longitudinal cross-over trials comparing multiple treatments across the same group of patients will be an important prerequisite step to both facilitate precision psychiatry and identify generalizable physiological predictors of response between and across treatment options. |
format | Online Article Text |
id | pubmed-9374666 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-93746662022-08-14 Predicting treatment response using EEG in major depressive disorder: A machine-learning meta-analysis Watts, Devon Pulice, Rafaela Fernandes Reilly, Jim Brunoni, Andre R. Kapczinski, Flávio Passos, Ives Cavalcante Transl Psychiatry Review Article Selecting a course of treatment in psychiatry remains a trial-and-error process, and this long-standing clinical challenge has prompted an increased focus on predictive models of treatment response using machine learning techniques. Electroencephalography (EEG) represents a cost-effective and scalable potential measure to predict treatment response to major depressive disorder. We performed separate meta-analyses to determine the ability of models to distinguish between responders and non-responders using EEG across treatments, as well as a performed subgroup analysis of response to transcranial magnetic stimulation (rTMS), and antidepressants (Registration Number: CRD42021257477) in Major Depressive Disorder by searching PubMed, Scopus, and Web of Science for articles published between January 1960 and February 2022. We included 15 studies that predicted treatment responses among patients with major depressive disorder using machine-learning techniques. Within a random-effects model with a restricted maximum likelihood estimator comprising 758 patients, the pooled accuracy across studies was 83.93% (95% CI: 78.90–89.29), with an Area-Under-the-Curve (AUC) of 0.850 (95% CI: 0.747–0.890), and partial AUC of 0.779. The average sensitivity and specificity across models were 77.96% (95% CI: 60.05–88.70), and 84.60% (95% CI: 67.89–92.39), respectively. In a subgroup analysis, greater performance was observed in predicting response to rTMS (Pooled accuracy: 85.70% (95% CI: 77.45–94.83), Area-Under-the-Curve (AUC): 0.928, partial AUC: 0.844), relative to antidepressants (Pooled accuracy: 81.41% (95% CI: 77.45–94.83, AUC: 0.895, pAUC: 0.821). Furthermore, across all meta-analyses, the specificity (true negatives) of EEG models was greater than the sensitivity (true positives), suggesting that EEG models thus far better identify non-responders than responders to treatment in MDD. Studies varied widely in important features across models, although relevant features included absolute and relative power in frontal and temporal electrodes, measures of connectivity, and asymmetry across hemispheres. Predictive models of treatment response using EEG hold promise in major depressive disorder, although there is a need for prospective model validation in independent datasets, and a greater emphasis on replicating physiological markers. Crucially, standardization in cut-off values and clinical scales for defining clinical response and non-response will aid in the reproducibility of findings and the clinical utility of predictive models. Furthermore, several models thus far have used data from open-label trials with small sample sizes and evaluated performance in the absence of training and testing sets, which increases the risk of statistical overfitting. Large consortium studies are required to establish predictive signatures of treatment response using EEG, and better elucidate the replicability of specific markers. Additionally, it is speculated that greater performance was observed in rTMS models, since EEG is assessing neural networks more likely to be directly targeted by rTMS, comprising electrical activity primarily near the surface of the cortex. Prospectively, there is a need for models that examine the comparative effectiveness of multiple treatments across the same patients. However, this will require a thoughtful consideration towards cumulative treatment effects, and whether washout periods between treatments should be utilised. Regardless, longitudinal cross-over trials comparing multiple treatments across the same group of patients will be an important prerequisite step to both facilitate precision psychiatry and identify generalizable physiological predictors of response between and across treatment options. Nature Publishing Group UK 2022-08-12 /pmc/articles/PMC9374666/ /pubmed/35961967 http://dx.doi.org/10.1038/s41398-022-02064-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Review Article Watts, Devon Pulice, Rafaela Fernandes Reilly, Jim Brunoni, Andre R. Kapczinski, Flávio Passos, Ives Cavalcante Predicting treatment response using EEG in major depressive disorder: A machine-learning meta-analysis |
title | Predicting treatment response using EEG in major depressive disorder: A machine-learning meta-analysis |
title_full | Predicting treatment response using EEG in major depressive disorder: A machine-learning meta-analysis |
title_fullStr | Predicting treatment response using EEG in major depressive disorder: A machine-learning meta-analysis |
title_full_unstemmed | Predicting treatment response using EEG in major depressive disorder: A machine-learning meta-analysis |
title_short | Predicting treatment response using EEG in major depressive disorder: A machine-learning meta-analysis |
title_sort | predicting treatment response using eeg in major depressive disorder: a machine-learning meta-analysis |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374666/ https://www.ncbi.nlm.nih.gov/pubmed/35961967 http://dx.doi.org/10.1038/s41398-022-02064-z |
work_keys_str_mv | AT wattsdevon predictingtreatmentresponseusingeeginmajordepressivedisorderamachinelearningmetaanalysis AT pulicerafaelafernandes predictingtreatmentresponseusingeeginmajordepressivedisorderamachinelearningmetaanalysis AT reillyjim predictingtreatmentresponseusingeeginmajordepressivedisorderamachinelearningmetaanalysis AT brunoniandrer predictingtreatmentresponseusingeeginmajordepressivedisorderamachinelearningmetaanalysis AT kapczinskiflavio predictingtreatmentresponseusingeeginmajordepressivedisorderamachinelearningmetaanalysis AT passosivescavalcante predictingtreatmentresponseusingeeginmajordepressivedisorderamachinelearningmetaanalysis |