Cargando…
Semi-supervised learning framework for oil and gas pipeline failure detection
Quantifying failure events of oil and gas pipelines in real- or near-real-time facilitates a faster and more appropriate response plan. Developing a data-driven pipeline failure assessment model, however, faces a major challenge; failure history, in the form of incident reports, suffers from limited...
Autores principales: | Alobaidi, Mohammad H., Meguid, Mohamed A., Zayed, Tarek |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374783/ https://www.ncbi.nlm.nih.gov/pubmed/35962052 http://dx.doi.org/10.1038/s41598-022-16830-y |
Ejemplares similares
-
A Combined Semi-Supervised Deep Learning Method for Oil Leak Detection in Pipelines Using IIoT at the Edge
por: Spandonidis, Christos, et al.
Publicado: (2022) -
Predicting seismic-induced liquefaction through ensemble learning frameworks
por: Alobaidi, Mohammad H., et al.
Publicado: (2019) -
Semi-supervised learning /
Publicado: (2010) -
An efficient semi-supervised community detection framework in social networks
por: Li, Zhen, et al.
Publicado: (2017) -
A semi-supervised machine learning framework for microRNA classification
por: Sheikh Hassani, Mohsen, et al.
Publicado: (2019)