Cargando…
Is the Sex Difference a Clue to the Pathomechanism of Dry Eye Disease? Watch out for the NGF-TrkA-Piezo2 Signaling Axis and the Piezo2 Channelopathy
Dry eye disease (DED) is a multifactorial disorder with recognized pathology, but not entirely known pathomechanism. It is suggested to represent a continuum with neuropathic corneal pain with the paradox that DED is a pain-free disease in most cases, although it is regarded as a pain condition. The...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374789/ https://www.ncbi.nlm.nih.gov/pubmed/35507012 http://dx.doi.org/10.1007/s12031-022-02015-9 |
_version_ | 1784767865556041728 |
---|---|
author | Sonkodi, Balázs Resch, Miklós D. Hortobágyi, Tibor |
author_facet | Sonkodi, Balázs Resch, Miklós D. Hortobágyi, Tibor |
author_sort | Sonkodi, Balázs |
collection | PubMed |
description | Dry eye disease (DED) is a multifactorial disorder with recognized pathology, but not entirely known pathomechanism. It is suggested to represent a continuum with neuropathic corneal pain with the paradox that DED is a pain-free disease in most cases, although it is regarded as a pain condition. The current paper puts into perspective that one gateway from physiology to pathophysiology could be a Piezo2 channelopathy, opening the pathway to a potentially quad-phasic non-contact injury mechanism on a multifactorial basis and with a heterogeneous clinical picture. The primary non-contact injury phase could be the pain-free microinjury of the Piezo2 ion channel at the corneal somatosensory nerve terminal. The secondary non-contact injury phase involves harsher corneal tissue damage with C-fiber contribution due to the lost or inadequate intimate cross-talk between somatosensory Piezo2 and peripheral Piezo1. The third injury phase of this non-contact injury is the neuronal sensitization process with underlying repeated re-injury of the Piezo2, leading to the proposed chronic channelopathy. Notably, sensitization may evolve in certain cases in the absence of the second injury phase. Finally, the quadric injury phase is the lingering low-grade neuroinflammation associated with aging, called inflammaging. This quadric phase could clinically initiate or augment DED, explaining why increasing age is a risk factor. We highlight the potential role of the NGF-TrkA axis as a signaling mechanism that could further promote the microinjury of the corneal Piezo2 in a stress-derived hyperexcited state. The NGF-TrkA-Piezo2 axis might explain why female sex represents a risk factor for DED. |
format | Online Article Text |
id | pubmed-9374789 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-93747892022-08-14 Is the Sex Difference a Clue to the Pathomechanism of Dry Eye Disease? Watch out for the NGF-TrkA-Piezo2 Signaling Axis and the Piezo2 Channelopathy Sonkodi, Balázs Resch, Miklós D. Hortobágyi, Tibor J Mol Neurosci Article Dry eye disease (DED) is a multifactorial disorder with recognized pathology, but not entirely known pathomechanism. It is suggested to represent a continuum with neuropathic corneal pain with the paradox that DED is a pain-free disease in most cases, although it is regarded as a pain condition. The current paper puts into perspective that one gateway from physiology to pathophysiology could be a Piezo2 channelopathy, opening the pathway to a potentially quad-phasic non-contact injury mechanism on a multifactorial basis and with a heterogeneous clinical picture. The primary non-contact injury phase could be the pain-free microinjury of the Piezo2 ion channel at the corneal somatosensory nerve terminal. The secondary non-contact injury phase involves harsher corneal tissue damage with C-fiber contribution due to the lost or inadequate intimate cross-talk between somatosensory Piezo2 and peripheral Piezo1. The third injury phase of this non-contact injury is the neuronal sensitization process with underlying repeated re-injury of the Piezo2, leading to the proposed chronic channelopathy. Notably, sensitization may evolve in certain cases in the absence of the second injury phase. Finally, the quadric injury phase is the lingering low-grade neuroinflammation associated with aging, called inflammaging. This quadric phase could clinically initiate or augment DED, explaining why increasing age is a risk factor. We highlight the potential role of the NGF-TrkA axis as a signaling mechanism that could further promote the microinjury of the corneal Piezo2 in a stress-derived hyperexcited state. The NGF-TrkA-Piezo2 axis might explain why female sex represents a risk factor for DED. Springer US 2022-05-04 2022 /pmc/articles/PMC9374789/ /pubmed/35507012 http://dx.doi.org/10.1007/s12031-022-02015-9 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Sonkodi, Balázs Resch, Miklós D. Hortobágyi, Tibor Is the Sex Difference a Clue to the Pathomechanism of Dry Eye Disease? Watch out for the NGF-TrkA-Piezo2 Signaling Axis and the Piezo2 Channelopathy |
title | Is the Sex Difference a Clue to the Pathomechanism of Dry Eye Disease? Watch out for the NGF-TrkA-Piezo2 Signaling Axis and the Piezo2 Channelopathy |
title_full | Is the Sex Difference a Clue to the Pathomechanism of Dry Eye Disease? Watch out for the NGF-TrkA-Piezo2 Signaling Axis and the Piezo2 Channelopathy |
title_fullStr | Is the Sex Difference a Clue to the Pathomechanism of Dry Eye Disease? Watch out for the NGF-TrkA-Piezo2 Signaling Axis and the Piezo2 Channelopathy |
title_full_unstemmed | Is the Sex Difference a Clue to the Pathomechanism of Dry Eye Disease? Watch out for the NGF-TrkA-Piezo2 Signaling Axis and the Piezo2 Channelopathy |
title_short | Is the Sex Difference a Clue to the Pathomechanism of Dry Eye Disease? Watch out for the NGF-TrkA-Piezo2 Signaling Axis and the Piezo2 Channelopathy |
title_sort | is the sex difference a clue to the pathomechanism of dry eye disease? watch out for the ngf-trka-piezo2 signaling axis and the piezo2 channelopathy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374789/ https://www.ncbi.nlm.nih.gov/pubmed/35507012 http://dx.doi.org/10.1007/s12031-022-02015-9 |
work_keys_str_mv | AT sonkodibalazs isthesexdifferenceacluetothepathomechanismofdryeyediseasewatchoutforthengftrkapiezo2signalingaxisandthepiezo2channelopathy AT reschmiklosd isthesexdifferenceacluetothepathomechanismofdryeyediseasewatchoutforthengftrkapiezo2signalingaxisandthepiezo2channelopathy AT hortobagyitibor isthesexdifferenceacluetothepathomechanismofdryeyediseasewatchoutforthengftrkapiezo2signalingaxisandthepiezo2channelopathy |