Cargando…
Uncovering shape signatures of resting‐state functional connectivity by geometric deep learning on Riemannian manifold
Functional neural activities manifest geometric patterns, as evidenced by the evolving network topology of functional connectivities (FC) even in the resting state. In this work, we propose a novel manifold‐based geometric neural network for functional brain networks (called “Geo‐Net4Net” for short)...
Autores principales: | Dan, Tingting, Huang, Zhuobin, Cai, Hongmin, Lyday, Robert G., Laurienti, Paul J., Wu, Guorong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374896/ https://www.ncbi.nlm.nih.gov/pubmed/35538672 http://dx.doi.org/10.1002/hbm.25897 |
Ejemplares similares
-
Riemannian topology and geometric structures on manifolds
por: Galicki, Krzysztof, et al.
Publicado: (2009) -
Geometric mechanics on Riemannian manifolds: applications to partial differential equations
por: Calin, Ovidiu, et al.
Publicado: (2005) -
Riemannian manifolds : an introduction to curvature /
por: Lee, John M., 1950-
Publicado: (1997) -
Introduction to Riemannian manifolds
por: Lee, John M
Publicado: (2018) -
Differential and riemannian manifolds
por: Lang, Serge
Publicado: (1995)