Cargando…
Chemical named entity recognition in the texts of scientific publications using the naïve Bayes classifier approach
MOTIVATION: Application of chemical named entity recognition (CNER) algorithms allows retrieval of information from texts about chemical compound identifiers and creates associations with physical–chemical properties and biological activities. Scientific texts represent low-formalized sources of inf...
Autores principales: | Tarasova, O. A., Rudik, A. V., Biziukova, N. Yu., Filimonov, D. A., Poroikov, V. V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9375066/ https://www.ncbi.nlm.nih.gov/pubmed/35964150 http://dx.doi.org/10.1186/s13321-022-00633-4 |
Ejemplares similares
-
Automated Extraction of Information From Texts of Scientific Publications: Insights Into HIV Treatment Strategies
por: Biziukova, Nadezhda, et al.
Publicado: (2020) -
Identification of Molecular Mechanisms Involved in Viral Infection Progression Based on Text Mining: Case Study for HIV Infection
por: Tarasova, Olga, et al.
Publicado: (2023) -
A Computational Approach for the Prediction of HIV Resistance Based on Amino Acid and Nucleotide Descriptors
por: Tarasova, Olga, et al.
Publicado: (2018) -
Cascaded classifiers for confidence-based chemical named entity recognition
por: Corbett, Peter, et al.
Publicado: (2008) -
CLC-Pred 2.0: A Freely Available Web Application for In Silico Prediction of Human Cell Line Cytotoxicity and Molecular Mechanisms of Action for Druglike Compounds
por: Lagunin, Alexey A., et al.
Publicado: (2023)