Cargando…

Implications of sperm heat shock protein 70-2 in bull fertility

Heat shock protein 70 (HSP70) is one of the most abundant chaperone proteins. Their function is well documented in facilitating the protein synthesis, translocation, de novo folding, and ordering of multiprotein complexes. HSP70 in bovine consists of four genes: HSP70-1, HSP70-2, HSP70-3, and HSP70-...

Descripción completa

Detalles Bibliográficos
Autores principales: Rosyada, Zulfi Nur Amrina, Ulum, Mokhamad Fakhrul, Tumbelaka, Ligaya I. T. A., Solihin, Dedy Duryadi, Purwantara, Bambang, Memili, Erdogan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Veterinary World 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9375219/
https://www.ncbi.nlm.nih.gov/pubmed/35993069
http://dx.doi.org/10.14202/vetworld.2022.1456-1466
Descripción
Sumario:Heat shock protein 70 (HSP70) is one of the most abundant chaperone proteins. Their function is well documented in facilitating the protein synthesis, translocation, de novo folding, and ordering of multiprotein complexes. HSP70 in bovine consists of four genes: HSP70-1, HSP70-2, HSP70-3, and HSP70-4. HSP70-2 was found to be involved in fertility. Current knowledge implicates HSP70-2 in sperm quality, sperm capacitation, sperm–egg recognition, and fertilization essential for bull reproduction. HSP70-2 is also involved in the biological processes of spermatogenesis, as it protects cells from the effects of apoptosis and oxidative stress. Fertilization success is not only determined by the amount of sperm found in the female reproductive tract but also by the functional ability of the sperm. However, subfertility is more likely to be associated with changes in sperm molecular dynamics not detectable using conventional methods. As such, molecular analyses and omics methods have been developed to monitor crucial aspects of sperm molecular morphology that are important for sperm functions, which are the objectives of this review.