Cargando…
Pnpla5-knockout rats exhibit reduced expression levels of proteins involved in steroid metabolism and wound healing compared to wild-type rats
BACKGROUND: Patatin-like phospholipase domain containing 5 (PNPLA5) is a newly-discovered lipase. Although the PNPLA family plays critical roles in diverse biological processes, the biological functions of PNPLA5 mostly unknown. We previously found that the deletion of Pnpla5 in rats causes a variet...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9375266/ https://www.ncbi.nlm.nih.gov/pubmed/35962316 http://dx.doi.org/10.1186/s12864-022-08835-8 |
Sumario: | BACKGROUND: Patatin-like phospholipase domain containing 5 (PNPLA5) is a newly-discovered lipase. Although the PNPLA family plays critical roles in diverse biological processes, the biological functions of PNPLA5 mostly unknown. We previously found that the deletion of Pnpla5 in rats causes a variety of phenotypic abnormalities. In this study, we further explored the effects of Pnpla5 knockout (KO) on male rats. RESULTS: The body weight and testicular or epididymal tissue weight of three to six 3-month-old Pnpla5 KO or wild-type (WT) male Sprague–Dawley rats were measured. The protein expression levels were also measured via western blotting and iTRAQ (isobaric tags for relative and absolute quantitation) analyses. No significant difference between Pnpla5 KO and WT rats, regarding body weight, testicular or epididymal tissue weight, or hormone levels, were found. However, the relative testicular tissue weight of the KO (Pnpla5(−/−)) rats was higher (P < 0.05) than that of WT rats. Significant increases in apoptotic cells numbers (P < 0.001) and BAX and Caspase-9 expression levels were observed in the testicular tissue of Pnpla5(−/−) rats. Moreover, iTRAQ analysis revealed that the levels of proteins involved in steroid metabolism and wound healing were significantly decreased in Pnpla5(−/−) rats. CONCLUSION: This study revealed that Pnpla5 knockout induced apoptosis in rat testes. We also ascertained that Pnpla5 plays an important role in lipid metabolism, wound healing, and affects reproductive organs negatively, providing new target genes and pathways that can be analyzed to unravel the biological function of Pnpla5. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-022-08835-8. |
---|