Cargando…
Neural network methods for diagnosing patient conditions from cardiopulmonary exercise testing data
BACKGROUND: Cardiopulmonary exercise testing (CPET) provides a reliable and reproducible approach to measuring fitness in patients and diagnosing their health problems. However, the data from CPET consist of multiple time series that require training to interpret. Part of this training teaches the u...
Autores principales: | Brown, Donald E., Sharma, Suchetha, Jablonski, James A., Weltman, Arthur |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9375280/ https://www.ncbi.nlm.nih.gov/pubmed/35964102 http://dx.doi.org/10.1186/s13040-022-00299-6 |
Ejemplares similares
-
Cardiopulmonary Exercise Testing
por: Howard, Luke, et al.
Publicado: (2012) -
Cardiopulmonary Exercise Testing
por: Marciniuk, Darcy D., et al.
Publicado: (2013) -
Cardiopulmonary Exercise Testing as a Tool for Diagnosing Pulmonary Hypertension in Patients with Dilated Cardiomyopathy
por: Hirashiki, Akihiro, et al.
Publicado: (2016) -
Dysfunctional breathing diagnosed by cardiopulmonary exercise testing in ‘long COVID’ patients with persistent dyspnoea
por: Frésard, Isabelle, et al.
Publicado: (2022) -
Software for interpreting cardiopulmonary exercise tests
por: Ross, Robert M, et al.
Publicado: (2007)