Cargando…
Using Jupyter Notebooks for re-training machine learning models
Machine learning (ML) models require an extensive, user-driven selection of molecular descriptors in order to learn from chemical structures to predict actives and inactives with a high reliability. In addition, privacy concerns often restrict the access to sufficient data, leading to models with a...
Autores principales: | Smajić, Aljoša, Grandits, Melanie, Ecker, Gerhard F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9375336/ https://www.ncbi.nlm.nih.gov/pubmed/35964049 http://dx.doi.org/10.1186/s13321-022-00635-2 |
Ejemplares similares
-
IPython/Jupyter Notebooks
por: AVILÉS, Alejandro
Publicado: (2015) -
Biotechnology Data Analysis Training with Jupyter Notebooks
por: Liebal, Ulf W., et al.
Publicado: (2023) -
Integration of TMVA Output into Jupyter notebooks
por: Saliji, Albulena
Publicado: (2016) -
Practical Data Analysis Using Jupyter Notebook
por: Wintjen, Marc
Publicado: (2020) -
Machine Learning Concepts with Python and the Jupyter Notebook Environment: Using Tensorflow 2.0
por: Silaparasetty, Nikita
Publicado: (2020)