Cargando…
A Tumoral and Peritumoral CT-Based Radiomics and Machine Learning Approach to Predict the Microsatellite Instability of Rectal Carcinoma
OBJECTIVE: To predict the status of microsatellite instability (MSI) of rectal carcinoma (RC) using different machine learning algorithms based on tumoral and peritumoral radiomics combined with clinicopathological characteristics. METHODS: There were 497 RC patients enrolled in this retrospective s...
Autores principales: | Yuan, Hang, Peng, Yu, Xu, Xiren, Tu, Shiliang, Wei, Yuguo, Ma, Yanqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9375564/ https://www.ncbi.nlm.nih.gov/pubmed/35971393 http://dx.doi.org/10.2147/CMAR.S377138 |
Ejemplares similares
-
The CT-based intratumoral and peritumoral machine learning radiomics analysis in predicting lymph node metastasis in rectal carcinoma
por: Yuan, Hang, et al.
Publicado: (2022) -
Preoperative Prediction of Microsatellite Instability in Rectal Cancer Using Five Machine Learning Algorithms Based on Multiparametric MRI Radiomics
por: Zhang, Yang, et al.
Publicado: (2023) -
A CT-Based Tumoral and Mini-Peritumoral Radiomics Approach: Differentiate Fat-Poor Angiomyolipoma from Clear Cell Renal Cell Carcinoma
por: Ma, Yanqing, et al.
Publicado: (2021) -
The CT delta-radiomics based machine learning approach in evaluating multiple primary lung adenocarcinoma
por: Ma, Yanqing, et al.
Publicado: (2022) -
Prediction of Microsatellite Instability in Colorectal Cancer Using a Machine Learning Model Based on PET/CT Radiomics
por: Kim, Soyoung, et al.
Publicado: (2023)