Cargando…
Comparison of Fine-Tuned Deep Convolutional Neural Networks for the Automated Classification of Lung Cancer Cytology Images with Integration of Additional Classifiers
OBJECTIVE: It is essential to accurately diagnose and classify histological subtypes into adenocarcinoma (ADC), squamous cell carcinoma (SCC), and small cell lung carcinoma (SCLC) for the appropriate treatment of lung cancer patients. However, improving the accuracy and stability of diagnosis is cha...
Autores principales: | Tsukamoto, Tetsuya, Teramoto, Atsushi, Yamada, Ayumi, Kiriyama, Yuka, Sakurai, Eiko, Michiba, Ayano, Imaizumi, Kazuyoshi, Fujita, Hiroshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
West Asia Organization for Cancer Prevention
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9375620/ https://www.ncbi.nlm.nih.gov/pubmed/35485691 http://dx.doi.org/10.31557/APJCP.2022.23.4.1315 |
Ejemplares similares
-
Automated Classification of Idiopathic Pulmonary Fibrosis in Pathological Images Using Convolutional Neural Network and Generative Adversarial Networks
por: Teramoto, Atsushi, et al.
Publicado: (2022) -
Mutual stain conversion between Giemsa and Papanicolaou in cytological images using cycle generative adversarial network
por: Teramoto, Atsushi, et al.
Publicado: (2021) -
Weakly supervised learning for classification of lung cytological images using attention-based multiple instance learning
por: Teramoto, Atsushi, et al.
Publicado: (2021) -
Deep learning approach to classification of lung cytological images: Two-step training using actual and synthesized images by progressive growing of generative adversarial networks
por: Teramoto, Atsushi, et al.
Publicado: (2020) -
Automated Classification of Lung Cancer Types from Cytological Images Using Deep Convolutional Neural Networks
por: Teramoto, Atsushi, et al.
Publicado: (2017)