Cargando…
Components of the Female Sex Pheromone of the Newly-Described Canola Flower Midge, Contarinia brassicola
The canola flower midge, Contarinia brassicola Sinclair (Diptera: Cecidomyiidae), is a newly-described species that induces galls on canola, Brassica napus Linnaeus and Brassica rapa Linnaeus (Brassicaceae). Identification of the sex pheromone of C. brassicola is essential to developing monitoring t...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9375766/ https://www.ncbi.nlm.nih.gov/pubmed/35771405 http://dx.doi.org/10.1007/s10886-022-01369-z |
_version_ | 1784768032997900288 |
---|---|
author | Bray, Daniel P. Hall, David R. Harte, Steven J. Farman, Dudley I. Vankosky, Meghan A. Mori, Boyd A. |
author_facet | Bray, Daniel P. Hall, David R. Harte, Steven J. Farman, Dudley I. Vankosky, Meghan A. Mori, Boyd A. |
author_sort | Bray, Daniel P. |
collection | PubMed |
description | The canola flower midge, Contarinia brassicola Sinclair (Diptera: Cecidomyiidae), is a newly-described species that induces galls on canola, Brassica napus Linnaeus and Brassica rapa Linnaeus (Brassicaceae). Identification of the sex pheromone of C. brassicola is essential to developing monitoring tools to elucidate the geographic range and hosts of this new pest, and the extent to which it threatens the $30 billion Canadian canola industry. The aim of this study was to identify and synthesize the female-produced sex pheromone of C. brassicola and demonstrate its effectiveness in attracting males to traps in the field. Two peaks were identified through GC-EAG analysis of female-produced volatiles which elicited electrophysiological responses in male antennae. These peaks were initially characterized through GC–MS and synthesis as 2,7-diacetoxynonane (major component) and 2-acetoxynonane (minor component), and the racemic compounds elicited EAG responses in male antennae. All four stereoisomers of 2,7-diacetoxynonane were synthesized and the naturally-produced compound was shown to be primarily the (2R,7S)-isomer by analysis on an enantioselective GC column, with a small amount of (2R,7R)-2,7-diacetoxynonane also present. The configuration of the minor component could not be determined because of the small amount present, but this was assumed to be (2R)-2-acetoxynonane by comparison with the configuration of the other two components. In field trials, none of the four stereoisomers of 2,7-diacetoxynonane, presented individually or as a racemic mixture, was attractive to male C. brassicola. However, dispensers loaded with a 10 µg:1 µg blend of (2R,7S)- and (2R,7R)-2,7-diacetoxynonane caught large numbers of male C. brassicola and significantly more than other blends tested. The addition of 0.5 µg of (2R)-2-acetoxynonane to this blend further increased the number of males caught. In future work, we will seek to identify the optimum trapping protocol for the application of the pheromone in monitoring and surveillance. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10886-022-01369-z. |
format | Online Article Text |
id | pubmed-9375766 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-93757662022-08-15 Components of the Female Sex Pheromone of the Newly-Described Canola Flower Midge, Contarinia brassicola Bray, Daniel P. Hall, David R. Harte, Steven J. Farman, Dudley I. Vankosky, Meghan A. Mori, Boyd A. J Chem Ecol Article The canola flower midge, Contarinia brassicola Sinclair (Diptera: Cecidomyiidae), is a newly-described species that induces galls on canola, Brassica napus Linnaeus and Brassica rapa Linnaeus (Brassicaceae). Identification of the sex pheromone of C. brassicola is essential to developing monitoring tools to elucidate the geographic range and hosts of this new pest, and the extent to which it threatens the $30 billion Canadian canola industry. The aim of this study was to identify and synthesize the female-produced sex pheromone of C. brassicola and demonstrate its effectiveness in attracting males to traps in the field. Two peaks were identified through GC-EAG analysis of female-produced volatiles which elicited electrophysiological responses in male antennae. These peaks were initially characterized through GC–MS and synthesis as 2,7-diacetoxynonane (major component) and 2-acetoxynonane (minor component), and the racemic compounds elicited EAG responses in male antennae. All four stereoisomers of 2,7-diacetoxynonane were synthesized and the naturally-produced compound was shown to be primarily the (2R,7S)-isomer by analysis on an enantioselective GC column, with a small amount of (2R,7R)-2,7-diacetoxynonane also present. The configuration of the minor component could not be determined because of the small amount present, but this was assumed to be (2R)-2-acetoxynonane by comparison with the configuration of the other two components. In field trials, none of the four stereoisomers of 2,7-diacetoxynonane, presented individually or as a racemic mixture, was attractive to male C. brassicola. However, dispensers loaded with a 10 µg:1 µg blend of (2R,7S)- and (2R,7R)-2,7-diacetoxynonane caught large numbers of male C. brassicola and significantly more than other blends tested. The addition of 0.5 µg of (2R)-2-acetoxynonane to this blend further increased the number of males caught. In future work, we will seek to identify the optimum trapping protocol for the application of the pheromone in monitoring and surveillance. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10886-022-01369-z. Springer US 2022-06-30 2022 /pmc/articles/PMC9375766/ /pubmed/35771405 http://dx.doi.org/10.1007/s10886-022-01369-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Bray, Daniel P. Hall, David R. Harte, Steven J. Farman, Dudley I. Vankosky, Meghan A. Mori, Boyd A. Components of the Female Sex Pheromone of the Newly-Described Canola Flower Midge, Contarinia brassicola |
title | Components of the Female Sex Pheromone of the Newly-Described Canola Flower Midge, Contarinia brassicola |
title_full | Components of the Female Sex Pheromone of the Newly-Described Canola Flower Midge, Contarinia brassicola |
title_fullStr | Components of the Female Sex Pheromone of the Newly-Described Canola Flower Midge, Contarinia brassicola |
title_full_unstemmed | Components of the Female Sex Pheromone of the Newly-Described Canola Flower Midge, Contarinia brassicola |
title_short | Components of the Female Sex Pheromone of the Newly-Described Canola Flower Midge, Contarinia brassicola |
title_sort | components of the female sex pheromone of the newly-described canola flower midge, contarinia brassicola |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9375766/ https://www.ncbi.nlm.nih.gov/pubmed/35771405 http://dx.doi.org/10.1007/s10886-022-01369-z |
work_keys_str_mv | AT braydanielp componentsofthefemalesexpheromoneofthenewlydescribedcanolaflowermidgecontariniabrassicola AT halldavidr componentsofthefemalesexpheromoneofthenewlydescribedcanolaflowermidgecontariniabrassicola AT hartestevenj componentsofthefemalesexpheromoneofthenewlydescribedcanolaflowermidgecontariniabrassicola AT farmandudleyi componentsofthefemalesexpheromoneofthenewlydescribedcanolaflowermidgecontariniabrassicola AT vankoskymeghana componentsofthefemalesexpheromoneofthenewlydescribedcanolaflowermidgecontariniabrassicola AT moriboyda componentsofthefemalesexpheromoneofthenewlydescribedcanolaflowermidgecontariniabrassicola |