Cargando…
Machine learning approaches for diagnosing depression using EEG: A review
Depression has become one of the most crucial public health issues, threatening the quality of life of over 300 million people throughout the world. Nevertheless, the clinical diagnosis of depression is now still hampered by behavioral diagnostic methods. Due to the lack of objective laboratory diag...
Autores principales: | Liu, Yuan, Pu, Changqin, Xia, Shan, Deng, Dingyu, Wang, Xing, Li, Mengqian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
De Gruyter
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9375981/ https://www.ncbi.nlm.nih.gov/pubmed/36045698 http://dx.doi.org/10.1515/tnsci-2022-0234 |
Ejemplares similares
-
Resting-state EEG-based convolutional neural network for the diagnosis of depression and its severity
por: Li, Mengqian, et al.
Publicado: (2022) -
Anxiety, Depression, and PTSD among College Students in the Post-COVID-19 Era: A Cross-Sectional Study
por: Wang, Xing, et al.
Publicado: (2022) -
Machine Learning Approaches for MDD Detection and Emotion Decoding Using EEG Signals
por: Duan, Lijuan, et al.
Publicado: (2020) -
Impact of depressed state on attention and language processing during news broadcasts: EEG analysis and machine learning approach
por: Fuseda, Kohei, et al.
Publicado: (2022) -
Machine Learning Techniques Reveal Aberrated Multidimensional EEG Characteristics in Patients with Depression
por: Li, Gang, et al.
Publicado: (2023)