Cargando…
Intelligent Identification of Jute Pests Based on Transfer Learning and Deep Convolutional Neural Networks
Pest attacks pose a substantial threat to jute production and other significant crop plants. Jute farmers in Bangladesh generally distinguish between different pests that appear to be the same using their eyes and expertise, which isn't always accurate. We developed an intelligent model for jut...
Autores principales: | Sourav, Md Sakib Ullah, Wang, Huidong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9376051/ https://www.ncbi.nlm.nih.gov/pubmed/35990859 http://dx.doi.org/10.1007/s11063-022-10978-4 |
Ejemplares similares
-
YOLO-JD: A Deep Learning Network for Jute Diseases and Pests Detection from Images
por: Li, Dawei, et al.
Publicado: (2022) -
Identification Method of Citrus Aurantium Diseases and Pests Based on Deep Convolutional Neural Network
por: Lin, Yuke, et al.
Publicado: (2022) -
Bangladeshi Native Vehicle Classification Based on Transfer Learning with Deep Convolutional Neural Network
por: Hasan, Md Mahibul, et al.
Publicado: (2021) -
Transfer Learning with Deep Convolutional Neural Networks for Classifying Cellular Morphological Changes
por: Kensert, Alexander, et al.
Publicado: (2019) -
Identification of winter wheat pests and diseases based on improved convolutional neural network
por: Yao, Jianbin, et al.
Publicado: (2023)