Cargando…
Exploring the associative learning capabilities of the segmented attractor network for lifelong learning
This work explores the process of adapting the segmented attractor network to a lifelong learning setting. Taking inspirations from Hopfield networks and content-addressable memory, the segmented attractor network is a powerful tool for associative memory applications. The network's performance...
Autores principales: | Jones, Alexander, Jha, Rashmi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9376266/ https://www.ncbi.nlm.nih.gov/pubmed/35978653 http://dx.doi.org/10.3389/frai.2022.910407 |
Ejemplares similares
-
Self-Net: Lifelong Learning via Continual Self-Modeling
por: Mandivarapu, Jaya Krishna, et al.
Publicado: (2020) -
Learning analytics for lifelong career development: a framework to support sustainable formative assessment and self-reflection in programs developing career self-efficacy
por: Brass, Tamishka, et al.
Publicado: (2023) -
Self-Learning Network-based segmentation for real-time brain M.R. images through HARIS
por: Naga Srinivasu, Parvathaneni, et al.
Publicado: (2021) -
Active learning for data efficient semantic segmentation of canine bones in radiographs
por: Moreira da Silva, D. E., et al.
Publicado: (2022) -
Feasibility of Automated Segmentation of Pigmented Choroidal Lesions in OCT Data With Deep Learning
por: Valmaggia, Philippe, et al.
Publicado: (2022)