Cargando…

Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations

We report on an ongoing collaboration between epidemiological modellers and visualization researchers by documenting and reflecting upon knowledge constructs—a series of ideas, approaches and methods taken from existing visualization research and practice—deployed and developed to support modelling...

Descripción completa

Detalles Bibliográficos
Autores principales: Dykes, Jason, Abdul-Rahman, Alfie, Archambault, Daniel, Bach, Benjamin, Borgo, Rita, Chen, Min, Enright, Jessica, Fang, Hui, Firat, Elif E., Freeman, Euan, Gönen, Tuna, Harris, Claire, Jianu, Radu, John, Nigel W., Khan, Saiful, Lahiff, Andrew, Laramee, Robert S., Matthews, Louise, Mohr, Sibylle, Nguyen, Phong H., Rahat, Alma A. M., Reeve, Richard, Ritsos, Panagiotis D., Roberts, Jonathan C., Slingsby, Aidan, Swallow, Ben, Torsney-Weir, Thomas, Turkay, Cagatay, Turner, Robert, Vidal, Franck P., Wang, Qiru, Wood, Jo, Xu, Kai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9376715/
https://www.ncbi.nlm.nih.gov/pubmed/35965467
http://dx.doi.org/10.1098/rsta.2021.0299
_version_ 1784768192807174144
author Dykes, Jason
Abdul-Rahman, Alfie
Archambault, Daniel
Bach, Benjamin
Borgo, Rita
Chen, Min
Enright, Jessica
Fang, Hui
Firat, Elif E.
Freeman, Euan
Gönen, Tuna
Harris, Claire
Jianu, Radu
John, Nigel W.
Khan, Saiful
Lahiff, Andrew
Laramee, Robert S.
Matthews, Louise
Mohr, Sibylle
Nguyen, Phong H.
Rahat, Alma A. M.
Reeve, Richard
Ritsos, Panagiotis D.
Roberts, Jonathan C.
Slingsby, Aidan
Swallow, Ben
Torsney-Weir, Thomas
Turkay, Cagatay
Turner, Robert
Vidal, Franck P.
Wang, Qiru
Wood, Jo
Xu, Kai
author_facet Dykes, Jason
Abdul-Rahman, Alfie
Archambault, Daniel
Bach, Benjamin
Borgo, Rita
Chen, Min
Enright, Jessica
Fang, Hui
Firat, Elif E.
Freeman, Euan
Gönen, Tuna
Harris, Claire
Jianu, Radu
John, Nigel W.
Khan, Saiful
Lahiff, Andrew
Laramee, Robert S.
Matthews, Louise
Mohr, Sibylle
Nguyen, Phong H.
Rahat, Alma A. M.
Reeve, Richard
Ritsos, Panagiotis D.
Roberts, Jonathan C.
Slingsby, Aidan
Swallow, Ben
Torsney-Weir, Thomas
Turkay, Cagatay
Turner, Robert
Vidal, Franck P.
Wang, Qiru
Wood, Jo
Xu, Kai
author_sort Dykes, Jason
collection PubMed
description We report on an ongoing collaboration between epidemiological modellers and visualization researchers by documenting and reflecting upon knowledge constructs—a series of ideas, approaches and methods taken from existing visualization research and practice—deployed and developed to support modelling of the COVID-19 pandemic. Structured independent commentary on these efforts is synthesized through iterative reflection to develop: evidence of the effectiveness and value of visualization in this context; open problems upon which the research communities may focus; guidance for future activity of this type and recommendations to safeguard the achievements and promote, advance, secure and prepare for future collaborations of this kind. In describing and comparing a series of related projects that were undertaken in unprecedented conditions, our hope is that this unique report, and its rich interactive supplementary materials, will guide the scientific community in embracing visualization in its observation, analysis and modelling of data as well as in disseminating findings. Equally we hope to encourage the visualization community to engage with impactful science in addressing its emerging data challenges. If we are successful, this showcase of activity may stimulate mutually beneficial engagement between communities with complementary expertise to address problems of significance in epidemiology and beyond. See https://ramp-vis.github.io/RAMPVIS-PhilTransA-Supplement/. This article is part of the theme issue ‘Technical challenges of modelling real-life epidemics and examples of overcoming these’.
format Online
Article
Text
id pubmed-9376715
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The Royal Society
record_format MEDLINE/PubMed
spelling pubmed-93767152022-08-22 Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations Dykes, Jason Abdul-Rahman, Alfie Archambault, Daniel Bach, Benjamin Borgo, Rita Chen, Min Enright, Jessica Fang, Hui Firat, Elif E. Freeman, Euan Gönen, Tuna Harris, Claire Jianu, Radu John, Nigel W. Khan, Saiful Lahiff, Andrew Laramee, Robert S. Matthews, Louise Mohr, Sibylle Nguyen, Phong H. Rahat, Alma A. M. Reeve, Richard Ritsos, Panagiotis D. Roberts, Jonathan C. Slingsby, Aidan Swallow, Ben Torsney-Weir, Thomas Turkay, Cagatay Turner, Robert Vidal, Franck P. Wang, Qiru Wood, Jo Xu, Kai Philos Trans A Math Phys Eng Sci Articles We report on an ongoing collaboration between epidemiological modellers and visualization researchers by documenting and reflecting upon knowledge constructs—a series of ideas, approaches and methods taken from existing visualization research and practice—deployed and developed to support modelling of the COVID-19 pandemic. Structured independent commentary on these efforts is synthesized through iterative reflection to develop: evidence of the effectiveness and value of visualization in this context; open problems upon which the research communities may focus; guidance for future activity of this type and recommendations to safeguard the achievements and promote, advance, secure and prepare for future collaborations of this kind. In describing and comparing a series of related projects that were undertaken in unprecedented conditions, our hope is that this unique report, and its rich interactive supplementary materials, will guide the scientific community in embracing visualization in its observation, analysis and modelling of data as well as in disseminating findings. Equally we hope to encourage the visualization community to engage with impactful science in addressing its emerging data challenges. If we are successful, this showcase of activity may stimulate mutually beneficial engagement between communities with complementary expertise to address problems of significance in epidemiology and beyond. See https://ramp-vis.github.io/RAMPVIS-PhilTransA-Supplement/. This article is part of the theme issue ‘Technical challenges of modelling real-life epidemics and examples of overcoming these’. The Royal Society 2022-10-03 2022-08-15 /pmc/articles/PMC9376715/ /pubmed/35965467 http://dx.doi.org/10.1098/rsta.2021.0299 Text en © 2022 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited.
spellingShingle Articles
Dykes, Jason
Abdul-Rahman, Alfie
Archambault, Daniel
Bach, Benjamin
Borgo, Rita
Chen, Min
Enright, Jessica
Fang, Hui
Firat, Elif E.
Freeman, Euan
Gönen, Tuna
Harris, Claire
Jianu, Radu
John, Nigel W.
Khan, Saiful
Lahiff, Andrew
Laramee, Robert S.
Matthews, Louise
Mohr, Sibylle
Nguyen, Phong H.
Rahat, Alma A. M.
Reeve, Richard
Ritsos, Panagiotis D.
Roberts, Jonathan C.
Slingsby, Aidan
Swallow, Ben
Torsney-Weir, Thomas
Turkay, Cagatay
Turner, Robert
Vidal, Franck P.
Wang, Qiru
Wood, Jo
Xu, Kai
Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations
title Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations
title_full Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations
title_fullStr Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations
title_full_unstemmed Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations
title_short Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations
title_sort visualization for epidemiological modelling: challenges, solutions, reflections and recommendations
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9376715/
https://www.ncbi.nlm.nih.gov/pubmed/35965467
http://dx.doi.org/10.1098/rsta.2021.0299
work_keys_str_mv AT dykesjason visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT abdulrahmanalfie visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT archambaultdaniel visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT bachbenjamin visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT borgorita visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT chenmin visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT enrightjessica visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT fanghui visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT firatelife visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT freemaneuan visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT gonentuna visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT harrisclaire visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT jianuradu visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT johnnigelw visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT khansaiful visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT lahiffandrew visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT larameeroberts visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT matthewslouise visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT mohrsibylle visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT nguyenphongh visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT rahatalmaam visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT reeverichard visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT ritsospanagiotisd visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT robertsjonathanc visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT slingsbyaidan visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT swallowben visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT torsneyweirthomas visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT turkaycagatay visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT turnerrobert visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT vidalfranckp visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT wangqiru visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT woodjo visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT xukai visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations