Cargando…
Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations
We report on an ongoing collaboration between epidemiological modellers and visualization researchers by documenting and reflecting upon knowledge constructs—a series of ideas, approaches and methods taken from existing visualization research and practice—deployed and developed to support modelling...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9376715/ https://www.ncbi.nlm.nih.gov/pubmed/35965467 http://dx.doi.org/10.1098/rsta.2021.0299 |
_version_ | 1784768192807174144 |
---|---|
author | Dykes, Jason Abdul-Rahman, Alfie Archambault, Daniel Bach, Benjamin Borgo, Rita Chen, Min Enright, Jessica Fang, Hui Firat, Elif E. Freeman, Euan Gönen, Tuna Harris, Claire Jianu, Radu John, Nigel W. Khan, Saiful Lahiff, Andrew Laramee, Robert S. Matthews, Louise Mohr, Sibylle Nguyen, Phong H. Rahat, Alma A. M. Reeve, Richard Ritsos, Panagiotis D. Roberts, Jonathan C. Slingsby, Aidan Swallow, Ben Torsney-Weir, Thomas Turkay, Cagatay Turner, Robert Vidal, Franck P. Wang, Qiru Wood, Jo Xu, Kai |
author_facet | Dykes, Jason Abdul-Rahman, Alfie Archambault, Daniel Bach, Benjamin Borgo, Rita Chen, Min Enright, Jessica Fang, Hui Firat, Elif E. Freeman, Euan Gönen, Tuna Harris, Claire Jianu, Radu John, Nigel W. Khan, Saiful Lahiff, Andrew Laramee, Robert S. Matthews, Louise Mohr, Sibylle Nguyen, Phong H. Rahat, Alma A. M. Reeve, Richard Ritsos, Panagiotis D. Roberts, Jonathan C. Slingsby, Aidan Swallow, Ben Torsney-Weir, Thomas Turkay, Cagatay Turner, Robert Vidal, Franck P. Wang, Qiru Wood, Jo Xu, Kai |
author_sort | Dykes, Jason |
collection | PubMed |
description | We report on an ongoing collaboration between epidemiological modellers and visualization researchers by documenting and reflecting upon knowledge constructs—a series of ideas, approaches and methods taken from existing visualization research and practice—deployed and developed to support modelling of the COVID-19 pandemic. Structured independent commentary on these efforts is synthesized through iterative reflection to develop: evidence of the effectiveness and value of visualization in this context; open problems upon which the research communities may focus; guidance for future activity of this type and recommendations to safeguard the achievements and promote, advance, secure and prepare for future collaborations of this kind. In describing and comparing a series of related projects that were undertaken in unprecedented conditions, our hope is that this unique report, and its rich interactive supplementary materials, will guide the scientific community in embracing visualization in its observation, analysis and modelling of data as well as in disseminating findings. Equally we hope to encourage the visualization community to engage with impactful science in addressing its emerging data challenges. If we are successful, this showcase of activity may stimulate mutually beneficial engagement between communities with complementary expertise to address problems of significance in epidemiology and beyond. See https://ramp-vis.github.io/RAMPVIS-PhilTransA-Supplement/. This article is part of the theme issue ‘Technical challenges of modelling real-life epidemics and examples of overcoming these’. |
format | Online Article Text |
id | pubmed-9376715 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-93767152022-08-22 Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations Dykes, Jason Abdul-Rahman, Alfie Archambault, Daniel Bach, Benjamin Borgo, Rita Chen, Min Enright, Jessica Fang, Hui Firat, Elif E. Freeman, Euan Gönen, Tuna Harris, Claire Jianu, Radu John, Nigel W. Khan, Saiful Lahiff, Andrew Laramee, Robert S. Matthews, Louise Mohr, Sibylle Nguyen, Phong H. Rahat, Alma A. M. Reeve, Richard Ritsos, Panagiotis D. Roberts, Jonathan C. Slingsby, Aidan Swallow, Ben Torsney-Weir, Thomas Turkay, Cagatay Turner, Robert Vidal, Franck P. Wang, Qiru Wood, Jo Xu, Kai Philos Trans A Math Phys Eng Sci Articles We report on an ongoing collaboration between epidemiological modellers and visualization researchers by documenting and reflecting upon knowledge constructs—a series of ideas, approaches and methods taken from existing visualization research and practice—deployed and developed to support modelling of the COVID-19 pandemic. Structured independent commentary on these efforts is synthesized through iterative reflection to develop: evidence of the effectiveness and value of visualization in this context; open problems upon which the research communities may focus; guidance for future activity of this type and recommendations to safeguard the achievements and promote, advance, secure and prepare for future collaborations of this kind. In describing and comparing a series of related projects that were undertaken in unprecedented conditions, our hope is that this unique report, and its rich interactive supplementary materials, will guide the scientific community in embracing visualization in its observation, analysis and modelling of data as well as in disseminating findings. Equally we hope to encourage the visualization community to engage with impactful science in addressing its emerging data challenges. If we are successful, this showcase of activity may stimulate mutually beneficial engagement between communities with complementary expertise to address problems of significance in epidemiology and beyond. See https://ramp-vis.github.io/RAMPVIS-PhilTransA-Supplement/. This article is part of the theme issue ‘Technical challenges of modelling real-life epidemics and examples of overcoming these’. The Royal Society 2022-10-03 2022-08-15 /pmc/articles/PMC9376715/ /pubmed/35965467 http://dx.doi.org/10.1098/rsta.2021.0299 Text en © 2022 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Articles Dykes, Jason Abdul-Rahman, Alfie Archambault, Daniel Bach, Benjamin Borgo, Rita Chen, Min Enright, Jessica Fang, Hui Firat, Elif E. Freeman, Euan Gönen, Tuna Harris, Claire Jianu, Radu John, Nigel W. Khan, Saiful Lahiff, Andrew Laramee, Robert S. Matthews, Louise Mohr, Sibylle Nguyen, Phong H. Rahat, Alma A. M. Reeve, Richard Ritsos, Panagiotis D. Roberts, Jonathan C. Slingsby, Aidan Swallow, Ben Torsney-Weir, Thomas Turkay, Cagatay Turner, Robert Vidal, Franck P. Wang, Qiru Wood, Jo Xu, Kai Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations |
title | Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations |
title_full | Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations |
title_fullStr | Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations |
title_full_unstemmed | Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations |
title_short | Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations |
title_sort | visualization for epidemiological modelling: challenges, solutions, reflections and recommendations |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9376715/ https://www.ncbi.nlm.nih.gov/pubmed/35965467 http://dx.doi.org/10.1098/rsta.2021.0299 |
work_keys_str_mv | AT dykesjason visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT abdulrahmanalfie visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT archambaultdaniel visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT bachbenjamin visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT borgorita visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT chenmin visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT enrightjessica visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT fanghui visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT firatelife visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT freemaneuan visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT gonentuna visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT harrisclaire visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT jianuradu visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT johnnigelw visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT khansaiful visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT lahiffandrew visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT larameeroberts visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT matthewslouise visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT mohrsibylle visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT nguyenphongh visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT rahatalmaam visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT reeverichard visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT ritsospanagiotisd visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT robertsjonathanc visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT slingsbyaidan visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT swallowben visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT torsneyweirthomas visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT turkaycagatay visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT turnerrobert visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT vidalfranckp visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT wangqiru visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT woodjo visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations AT xukai visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations |